

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		Malus de 2 points en cas d'erreur ou d'oubli du STI ou/et du NOM. NOM [EN MAJUSCULES] : Prénom :
On considère l'équation différentielle $(E): y'(x) - 3y(x) = -6$. Les solutions sont $: y(x) = y_0(x) + y_p(x)$ avec $y_0(x) = ke^{ax}$ où a et $k \in \mathbb{R}$. Question 1 Résoudre l'équation sans second membre, déterminer la constante a et indiquer sa valeur $:$ Question 2 On donne la condition initiale $: y(\frac{1}{3}) = 2 + 7e$ Rechercher la solution particulière $y_p(x)$, déterminer la constante k et indiquer sa valeur $:$ Question 3 On considère l'équation différentielle suivante $: y''(x) - 3y'(x) + 2y(x) = e^x$. La solution $y_0(x)$ de l'équation sans second membre a pour expression $:$ $y_0(x) = (A + Bx)e^x$ où A et $B \in \mathbb{R}$. $y_0(x) = (A\sin(2x) + B\cos(2x))e^x$ où A et $B \in \mathbb{R}$. $y_0(x) = Ash(x) + Bch(x)$ où A et $B \in \mathbb{R}$. $y_0(x) = Ae^x + Be^{2x}$ où A et $B \in \mathbb{R}$. Question 4 Quelle est la forme de la solution particulière $y_p(x)$ de l'équation différentielle (E) suivante $: y''(x) - y'(x) - 2y(x) = (x^2 + 5x + 1)e^{-x}$ Ne pas résoudre, donner simplement la forme de cette solution (c'est une question de cours). $y_0(x) = (ax^2 + bx + c)e^{-x}$ où a,b et $c \in \mathbb{R}$ $y_0(x) = x(ax^2 + bx + c)e^{-x}$ où a,b et $c \in \mathbb{R}$	3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8	faisant apparaître le symbole \clubsuit ont plusieurs bonnes réponses. Les autres ont une unique bonne réponse. L'indiquer sur cette feuille en noircissant la case correspondante au stylo à bille noir. Aucune justification n'est demandée. Les réponses fausses retirent la moitié des points. Une absence de réponse n'enlève pas de points. Pour rectifier une erreur, utilisez un correcteur "blanc" pour faire disparaître complètement la case noircie par erreur. Ne pas redessiner la case! Calculatrices autorisées: calculatrices "Collège" uniquement (FX-92). Les
Question 2 On donne la condition initiale : $y(\frac{1}{3}) = 2 + 7e$ Rechercher la solution particulière $y_p(x)$, déterminer la constante k et indiquer sa valeur : Question 3 On considère l'équation différentielle suivante : $y''(x) - 3y'(x) + 2y(x) = e^x$. La solution $y_0(x)$ de l'équation sans second membre a pour expression : $y_0(x) = (A + Bx)e^x$ où A et $B \in \mathbb{R}$. $y_0(x) = (A\sin(2x) + B\cos(2x))e^x$ où A et $B \in \mathbb{R}$. $y_0(x) = Ae^x + Be^{2x}$ où A et $B \in \mathbb{R}$. Question 4 Quelle est la forme de la solution particulière $y_p(x)$ de l'équation différentielle (E) suivante : $y''(x) - y'(x) - 2y(x) = (x^2 + 5x + 1)e^{-x}$ Ne pas résoudre, donner simplement la forme de cette solution (c'est une question de cours). $y_0(x) = (ax^2 + bx + c)e^{-x}$ où a,b et $c \in \mathbb{R}$ $y_0(x) = x(ax^2 + bx + c)e^{-x}$ où a,b et $c \in \mathbb{R}$	On considère l'équation diffé Les solutions sont : $y(x) = y$ Question 1 Résoudre l'équa	érentielle $(E): y'(x) - 3y(x) = -6$. $y_0(x) + y_p(x)$ avec $y_0(x) = ke^{ax}$ où a et $k \in \mathbb{R}$.
$y_p(x)$, déterminer la constante k et indiquer sa valeur :		
solution $y_0(x)$ de l'équation sans second membre a pour expression :	$y_p(x)$, déterminer la constante h	k et indiquer sa valeur :
solution $y_0(x)$ de l'équation sans second membre a pour expression :	Ougstion 2 On considère l'	24 formation différentialle quivente : $dI(n) = 2d(n) + 2d(n) = a^{2}$. Le
suivante : $y''(x) - y'(x) - 2y(x) = (x^2 + 5x + 1)e^{-x}$ Ne pas résoudre, donner simplement la forme de cette solution (c'est une question de cours).		où A et $B \in \mathbb{R}$ $B \in \mathbb{R}$.
	suivante : $y''(x) - y'(x) - 2y(x)$	$= (x^2 + 5x + 1)e^{-x}$

Question	5
Q ucsuluii	v

On considère l'équation différentielle d'ordre 1 suivante (E): $(x^2 + 1)y'(x) - xy(x) = x$ 1/ Déterminer la solution générale $y_0(x)$ de l'équation sans second membre.

- 2/ Déterminer la solution particulière $y_p(x)$ de l'équation (E) (méthode de la variation de la
- 3/ En déduire l'ensemble des solutions $y(x) = y_0(x) + y_p(x)$ de (E) puis l'unique solution f(x) qui vérifie la condition initiale : f(0) = 2

Rédigez ci-dessous	25%	50%	75%	100%	Zone	réservée,	ne pas d	cocher.
	 					• • • • • • • •		
	 			• • • • • • • • •		• • • • • • • •		
	 					• • • • • • • •		
	 					• • • • • • • • •		
	 					• • • • • • • •		

