$\begin{array}{c} {\rm QCM\ r\'{e}vision\ septembre-octobre} \\ {\rm du\ } 08/11/2021 \end{array}$

Durée : 15 min. Aucun document n'est autorisé.

L'usage de la calculatrice est interdit.

Les questions faisant apparaître le symbole \clubsuit peuvent présenter zéro, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse.

Le document réponse est à la fin du sujet.

Question 1 Définir le point coïncident.

Question 2 Donner la définition du poids.

Question 3 \clubsuit La force d'inertie d'entraînement dans un référentiel en rotation uniforme à ω autour d'un axe fixe Oz possède les propriétés suivantes :

- A C'est une force qui ne se ressent que dans des référentiels en rotation.
- \boxed{B} Elle est centrifuge.
- C Elle est axifuge.

- \boxed{D} Elle s'écrit : $m\omega^2\overrightarrow{\text{HM}}$. H, projeté de M sur l'axe de rotation.
- \boxed{E} Aucune de ces réponses n'est correcte.

Question 4 ♣

On considère un point matériel se déplaçant sur une sphère et repéré par ses coordonnées sphériques (r, θ, φ) . On étudie son mouvement dans un référentiel en rotation à ω uniforme autour de l'axe vertical ascendant Oz. l'énergie potentielle associée à la force d'inertie d'entraînement est :

- A D'autant plus grande que le point M s'éloigne de l'axe de rotation.
- $\boxed{B} \ \mathbf{E}_p = \frac{1}{2}\omega^2 r^2$
- C $E_p = -\frac{1}{2}\omega^2(HM)^2 + Cte H projeté de M sur <math>Oz$
- $\boxed{D} E_p = \frac{1}{2}\omega^2 r^2 + Cte$
- E Aucune de ces réponses n'est correcte.

Question 5 La permittivité du vide ε_0 vaut :

Question 6 Soit (O, x, y, z) un repère de l'espace dans lequel existe une distribution de charge. Si (O, x, z) est un plan d'antisymétrie de la distribution de charge :

- \overrightarrow{A} Le champ est impair selon la variable y.
- B Le champ est indépendant de x et z.
- \overline{D} Le champ est invariant par translation selon y.

Question 8 Le théorème de Gauss pour la gravitation est :

$$\boxed{A} \oint \overrightarrow{\mathbf{G}} \cdot \overrightarrow{\mathbf{dS}} = 4\pi \mathbf{G} m_{int}$$

$$B \not \longrightarrow \overrightarrow{G} \cdot \overrightarrow{dS} = -4\pi G m_{int}$$

$$C \oint \overrightarrow{G} \cdot \overrightarrow{dS} = \frac{m_{int}}{4\pi G}$$

$$\overrightarrow{D} \oint \overrightarrow{G} \cdot d\overrightarrow{S} = -\frac{m_{int}}{4\pi G}$$

Le champ électrique produit par un dipôle, orienté suivant l'axe z en coordonnées sphé-Question 9 riques (r, θ, φ) est :

- A Indépendant de l'angle θ
- B Contenu dans le plan médiateur du dipôle pour les points appartenant à ce plan.
- \overline{C} Décroissant en $\frac{1}{r^3}$
- \boxed{D} Décroissant en $\frac{1}{r}$

Question 10 La puissance volumique dissipée par effet Joule est :

- Due au champ magnétique.
- $\underline{B} \quad \mathcal{P} = \overrightarrow{j} \wedge \overrightarrow{E} \qquad \underline{C} \quad \mathcal{P} = \overrightarrow{j} \cdot \overrightarrow{E}$

Question 11 Le champ magnétique est :

- A Orthogonal aux plans d'antisymétrie de la distribution de courant.
- B Orthogonal aux plans de symétrie de la distribution de courant.

Question 12 Enoncer le théorème d'Ampère.

Question 13

Énoncer les quatre équations de Maxwell sous forme intégrale et locale avec leur nom.

Question 14

La conservation de la charge s'écrit :

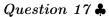
$$\boxed{A} \ \frac{\partial \rho}{\partial t} + \text{div } \overrightarrow{j} = 0$$

$$\boxed{B} \text{ div } \overrightarrow{\jmath} = 0$$

$$\boxed{C} \ \frac{\partial \rho}{\partial t} + \text{div } \overrightarrow{E} = 0$$

Question 15 4

Dans le cadre de l'ARQS :


- \overline{A} Si elle est magnétique les équations de Maxwell associées à \overrightarrow{B} s'écrivent comme en statique.
- B On néglige la propagation des ondes électromagnétiques.
- C La loi des nœuds n'est pas vérifiée.
- \overline{D} L \ll cau avec L la distance entre la source et le point M étudié et au le temps caractéristique d'évolution de la source.
- |E| Aucune de ces réponses n'est correcte.

Question 16

$$\boxed{A} \ u_{em} = \frac{1}{2}\mu_0 \mathbf{B}^2 + \frac{1}{2}\frac{\mathbf{E}^2}{\varepsilon_0}$$

$$\boxed{A} \ u_{em} = \frac{1}{2}\mu_0 \mathbf{B}^2 + \frac{1}{2}\frac{\mathbf{E}^2}{\varepsilon_0} \qquad \boxed{B} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B}^2 + \frac{1}{2}\varepsilon_0 \mathbf{E}^2 \qquad \boxed{C} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B} + \frac{1}{2}\varepsilon_0 \mathbf{E}$$

$$C u_{em} = \frac{1}{2u_0} \mathbf{B} + \frac{1}{2} \varepsilon_0 \mathbf{E}$$

$$\boxed{A} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\varepsilon_0}$$

un vecteur qui permet de quantifier le flux de puissance électromagnétique à travers une surface.

$$\overrightarrow{C} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\mu_0} \qquad \overrightarrow{D} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{B} \wedge \overrightarrow{E}}{\mu_0} \qquad \overrightarrow{E} \quad \overrightarrow{\Pi} = \mu_0 \overrightarrow{E} \wedge \overrightarrow{B}$$
El $\overrightarrow{\Pi} = \mu_0 \overrightarrow{E} \wedge \overrightarrow{B}$

Aucune de ces réponses n'est correcte.

$$\underline{E} \quad \overrightarrow{\Pi} = \mu_0 \overrightarrow{E} \wedge \overrightarrow{E}$$

Feuille de réponses :			
-	Nom et prénom :		
Les réponses aux questions sont à donner exclusivement sur cette feuille : les réponse onnées sur les feuilles précédentes ne seront pas prises en compte. La réponse doit être onnée en noircissant la ou les bonnes réponses.			
Question 1:	$oxed{F} oxed{J}$		
$Question \ 2:$	$oxed{F} oxed{J}$		
	<u></u>		
$egin{array}{llllllllllllllllllllllllllllllllllll$			
$Question \ 7:$	$oxed{F}$ $oxed{J}$		

Question $8: \boxed{A} \boxed{B} \boxed{C} \boxed{D}$

$Question \; g: \; oxedsymbol{A} \; oxedsymbol{B} \; oxedsymbol{C} \; oxedsymbol{D}$
$Question \; 10: \; oxed{A} \; oxed{B} \; oxed{C}$
$Question \; 11: \; oxedsymbol{ar{A}} \; oxedsymbol{ar{B}}$
Question 12:
Question 13:
Question 14: \overline{A} \overline{B} \overline{C}
$Question \; 15: \; oxed{A} \; oxed{B} \; oxed{C} \; oxed{D} \; oxed{E}$
$Question \; 16: \; oxed{A} \; oxed{B} \; oxed{C}$
$Question \; 17: \; oldsymbol{A} \; oldsymbol{B} \; oldsymbol{C} \; oldsymbol{D} \; oldsymbol{E} \; oldsymbol{F}$
Question 18:

QCM révision septembre-octobre du 08/11/2021

Durée : 15 min. Aucun document n'est autorisé.

L'usage de la calculatrice est interdit.

Les questions faisant apparaître le symbole 🌲 peuvent présenter zéro, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse.

Le document réponse est à la fin du sujet.

Question 1 Définir le point coïncident.

Question 2 Donner la définition du poids.

La force d'inertie d'entraînement dans un référentiel en rotation uniforme à ω autour Question $3 \clubsuit$ d'un axe fixe Oz possède les propriétés suivantes :

- A Elle est axifuge.
- \boxed{B} Elle est centrifuge.
- \overline{C} Elle s'écrit : $m\omega^2 \overrightarrow{HM}$. H, projeté de M sur

l'axe de rotation.

- D C'est une force qui ne se ressent que dans des référentiels en rotation.
- |E| Aucune de ces réponses n'est correcte.

Question 4 \$

On considère un point matériel se déplaçant sur une sphère et repéré par ses coordonnées sphériques (r,θ,φ) . On étudie son mouvement dans un référentiel en rotation à ω uniforme autour de l'axe vertical $ascendant\ Oz.\ l'énergie\ potentielle\ associ\'ee\ \grave{a}\ la\ force\ d'inertie\ d'entra\^nement\ est:$

$$\boxed{A} \ E_p = -\frac{1}{2}\omega^2 (HM)^2 + Cte \ H \ projet\'e \ de \ M \ sur \ Oz$$

$$\boxed{B} \ E_p = \frac{1}{2}\omega^2 r^2$$

$$\boxed{C} \ E_p = \frac{1}{2}\omega^2 r^2 + Cte$$

$$\boxed{B} \ \mathbf{E}_p = \frac{1}{2} \overline{\omega^2} r^2$$

$$C$$
 $E_p = \frac{1}{2}\omega^2 r^2 + Cte$

- D D'autant plus grande que le point M s'éloigne de l'axe de rotation.
- |E| Aucune de ces réponses n'est correcte.

La permittivité du vide ε_0 vaut : Question 5

Soit (O, x, y, z) un repère de l'espace dans lequel existe une distribution de charge. Si (O, x, z) est un plan d'antisymétrie de la distribution de charge :

- |A| Le champ est pair selon la variable y.
- B Le champ est indépendant de x et z.
- \overline{C} Le champ est invariant par translation selon y.
- D Le champ est impair selon la variable y.

$$\boxed{A} \oint \overrightarrow{\mathbf{G}} \cdot d\overrightarrow{\mathbf{S}} = -4\pi \mathbf{G} m_{int}$$

$$B \longrightarrow \overrightarrow{G} \cdot \overrightarrow{dS} = 4\pi G m_{int}$$

$$C \oint \overrightarrow{G} \cdot \overrightarrow{dS} = \frac{m_{int}}{4\pi G}$$

$$\overrightarrow{D} \oint \overrightarrow{G} \cdot d\overrightarrow{S} = -\frac{m_{int}}{4\pi G}$$

Le champ électrique produit par un dipôle, orienté suivant l'axe z en coordonnées sphé-Question 9 riques (r, θ, φ) est :

- A Indépendant de l'angle θ
- B Contenu dans le plan médiateur du dipôle pour les points appartenant à ce plan.
- C Décroissant en $\frac{\hat{1}}{r^3}$
- \boxed{D} Décroissant en $\frac{1}{r}$

Question 10 La puissance volumique dissipée par effet Joule est :

$$A \quad \mathcal{P} = \overrightarrow{\jmath} \cdot \overrightarrow{E}$$

$$\overline{A}$$
 $P = \overrightarrow{j} \cdot \overrightarrow{E}$
 \overline{B}
 $P = \overrightarrow{j} \wedge \overrightarrow{E}$

Question 11 Le champ magnétique est :

- A Orthogonal aux plans de symétrie de la distribution de courant.
- B Orthogonal aux plans d'antisymétrie de la distribution de courant.

Question 12 Enoncer le théorème d'Ampère.

Question 13

Énoncer les quatre équations de Maxwell sous forme intégrale et locale avec leur nom.

Question 14

La conservation de la charge s'écrit :

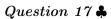
$$\boxed{A}$$
 div $\overrightarrow{\jmath} = 0$

$$\boxed{B} \ \frac{\partial \rho}{\partial t} + \text{div } \overrightarrow{j} = 0$$

$$\boxed{B} \frac{\partial \rho}{\partial t} + \operatorname{div} \overrightarrow{j} = 0 \qquad \boxed{C} \frac{\partial \rho}{\partial t} + \operatorname{div} \overrightarrow{E} = 0$$

Question 15 \$

Dans le cadre de l'ARQS :

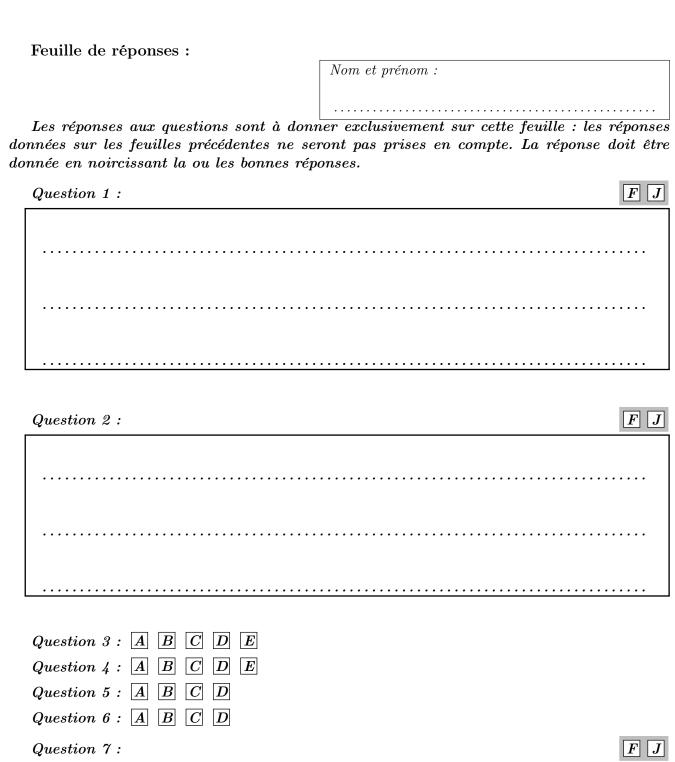

- A On néglige la propagation des ondes électromagnétiques.
- B La loi des nœuds n'est pas vérifiée.
- \boxed{C} L « $c\tau$ avec L la distance entre la source et le point M étudié et τ le temps caractéristique d'évolution de la source.
- \boxed{D} Si elle est magnétique les équations de Maxwell associées à \overrightarrow{B} s'écrivent comme en statique.
- |E| Aucune de ces réponses n'est correcte.

Question 16

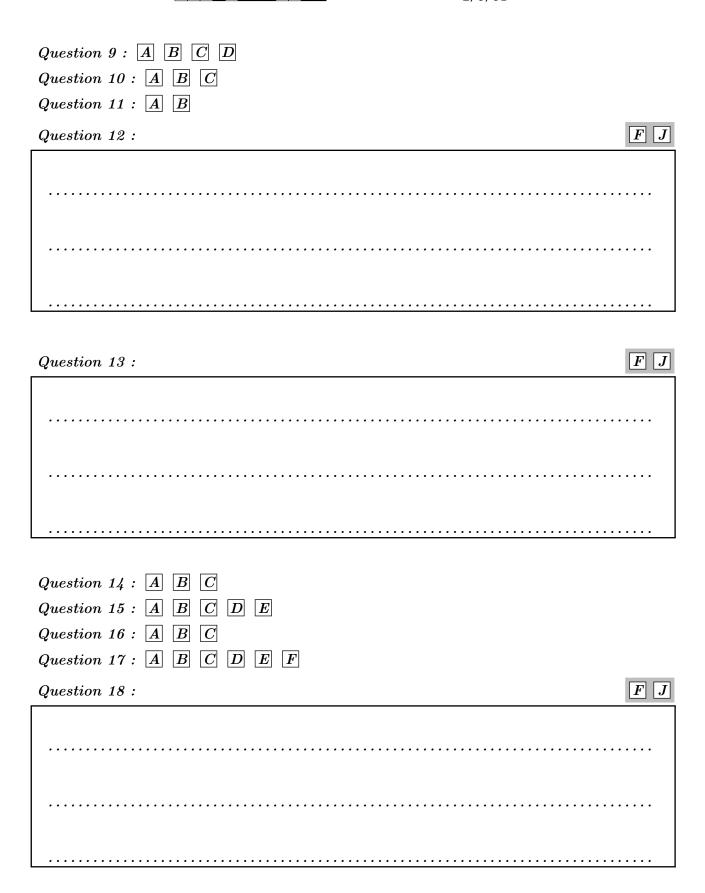
$$\boxed{A} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B} + \frac{1}{2} \varepsilon_0 \mathbf{E}$$

$$\boxed{A} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B} + \frac{1}{2} \varepsilon_0 \mathbf{E} \qquad \boxed{B} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B}^2 + \frac{1}{2} \varepsilon_0 \mathbf{E}^2 \qquad \boxed{C} \ u_{em} = \frac{1}{2} \mu_0 \mathbf{B}^2 + \frac{1}{2} \frac{\mathbf{E}^2}{\varepsilon_0} \mathbf{E}^2$$

$$\boxed{C} u_{em} = \frac{1}{2}\mu_0 B^2 + \frac{1}{2}\frac{E^2}{\varepsilon_0}$$


$$\boxed{\underline{A}} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{\mathbf{E}} \wedge \overrightarrow{\mathbf{B}}}{\mu_0}$$

$$\boxed{C} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\varepsilon_0}$$


$$\boxed{D} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{B} \wedge \overrightarrow{E}}{\mu_0}$$

$$\boxed{E} \quad \overrightarrow{\Pi} = \mu_0 \overrightarrow{E} \wedge \overrightarrow{B}$$

 $\overrightarrow{C} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\varepsilon_0} \qquad D \quad \overrightarrow{\Pi} = \frac{\overrightarrow{B} \wedge \overrightarrow{E}}{\mu_0} \qquad E \quad \overrightarrow{\Pi} = \mu_0 \overrightarrow{E} \wedge \overrightarrow{B}$ $F \quad \text{Aucune de ces réponses n'est correcte.}$

 $Question \ 8: oxedsymbol{A} oxedsymbol{B} oxedsymbol{C} oxedsymbol{D}$

QCM révision septembre-octobre du 08/11/2021

Durée : 15 min. Aucun document n'est autorisé.

L'usage de la calculatrice est interdit.

Les questions faisant apparaître le symbole 4 peuvent présenter zéro, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse.

Le document réponse est à la fin du sujet.

Question 1 Définir le point coïncident.

Question 2 Donner la définition du poids.

La force d'inertie d'entraînement dans un référentiel en rotation uniforme à ω autour Question $3 \clubsuit$ d'un axe fixe Oz possède les propriétés suivantes :

- A Elle est centrifuge.
- B Elle est axifuge.
- \overline{C} Elle s'écrit : $m\omega^2 \overrightarrow{HM}$. H, projeté de M sur

l'axe de rotation.

- D C'est une force qui ne se ressent que dans des référentiels en rotation.
- |E| Aucune de ces réponses n'est correcte.

Question 4 \$

On considère un point matériel se déplaçant sur une sphère et repéré par ses coordonnées sphériques (r,θ,φ) . On étudie son mouvement dans un référentiel en rotation à ω uniforme autour de l'axe vertical ascendant Oz. l'énergie potentielle associée à la force d'inertie d'entraînement est :

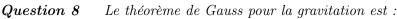
$$\boxed{A} \ \mathbf{E}_p = \frac{1}{2}\omega^2 r^2 + \mathbf{C}te$$

$$\boxed{B} \ \mathbf{E}_p = \frac{1}{2}\omega^2 r^2$$

$$\boxed{B} \ \mathbf{E}_p = \frac{1}{2}\omega^2 r^2$$

$$C$$
 $E_p = -\frac{1}{2}\omega^2(HM)^2 + Cte H projeté de M sur Oz$

- D'autant plus grande que le point M s'éloigne de l'axe de rotation.
- E Aucune de ces réponses n'est correcte.


Question 5 La permittivité du vide ε_0 vaut :

$$\boxed{A}$$
 8,85.10⁻¹² H.m⁻¹

$$C$$
 8,85.10⁻¹² F.m⁻¹

Question 6 Soit (O, x, y, z) un repère de l'espace dans lequel existe une distribution de charge. Si (O, x, z) est un plan d'antisymétrie de la distribution de charge :

- |A| Le champ est impair selon la variable y.
- B Le champ est invariant par translation selon y.
- C Le champ est indépendant de x et z.
- D Le champ est pair selon la variable y.

$$\boxed{A} \oint \overrightarrow{G} \cdot d\overrightarrow{S} = \frac{m_{int}}{4\pi G}$$

$$\overrightarrow{B}$$
 $\overrightarrow{\mathbf{G}}$. $\overrightarrow{\mathbf{dS}} = -\frac{m_{int}}{4\pi\mathbf{G}}$

$$\overrightarrow{C}$$
 $\oint \overrightarrow{G} \cdot d\overrightarrow{S} = -4\pi G m_{int}$

$$\boxed{D} \oint \overrightarrow{G} \cdot \overrightarrow{dS} = 4\pi G m_{int}$$

Le champ électrique produit par un dipôle, orienté suivant l'axe z en coordonnées sphé-Question 9 riques (r, θ, φ) est :

- A Indépendant de l'angle θ
- B Contenu dans le plan médiateur du dipôle pour les points appartenant à ce plan.
- \overline{C} Décroissant en $\frac{1}{r^3}$
- \boxed{D} Décroissant en $\frac{1}{r}$

Question 10 La puissance volumique dissipée par effet Joule est :

$$[A]$$
 $\mathcal{P} = \overrightarrow{j} \wedge \overrightarrow{E}$ $[B]$ $\mathcal{P} = \overrightarrow{j} \cdot \overrightarrow{E}$

$$B \quad \mathcal{P} = \overrightarrow{\jmath} . \overrightarrow{E}$$

Question 11 Le champ magnétique est :

- A Orthogonal aux plans de symétrie de la distribution de courant.
- B Orthogonal aux plans d'antisymétrie de la distribution de courant.

Question 12 Énoncer le théorème d'Ampère.

Question 13

Énoncer les quatre équations de Maxwell sous forme intégrale et locale avec leur nom.

Question 14

La conservation de la charge s'écrit :

$$\boxed{A} \frac{\partial \rho}{\partial t} + \text{div } \overrightarrow{j} = 0$$

$$\boxed{B} \operatorname{div} \overrightarrow{\jmath} = 0$$

$$\boxed{C} \frac{\partial \rho}{\partial t} + \text{div } \overrightarrow{E} = 0$$

Question 15 4

Dans le cadre de l'ARQS :

- A La loi des nœuds n'est pas vérifiée.
- \overline{B} Si elle est magnétique les équations de Maxwell associées à \overline{B} s'écrivent comme en statique.
- C On néglige la propagation des ondes électromagnétiques.
- $|D| \perp \ll c \tau$ avec \perp la distance entre la source et le point M étudié et τ le temps caractéristique d'évolution de la source.
- |E| Aucune de ces réponses n'est correcte.

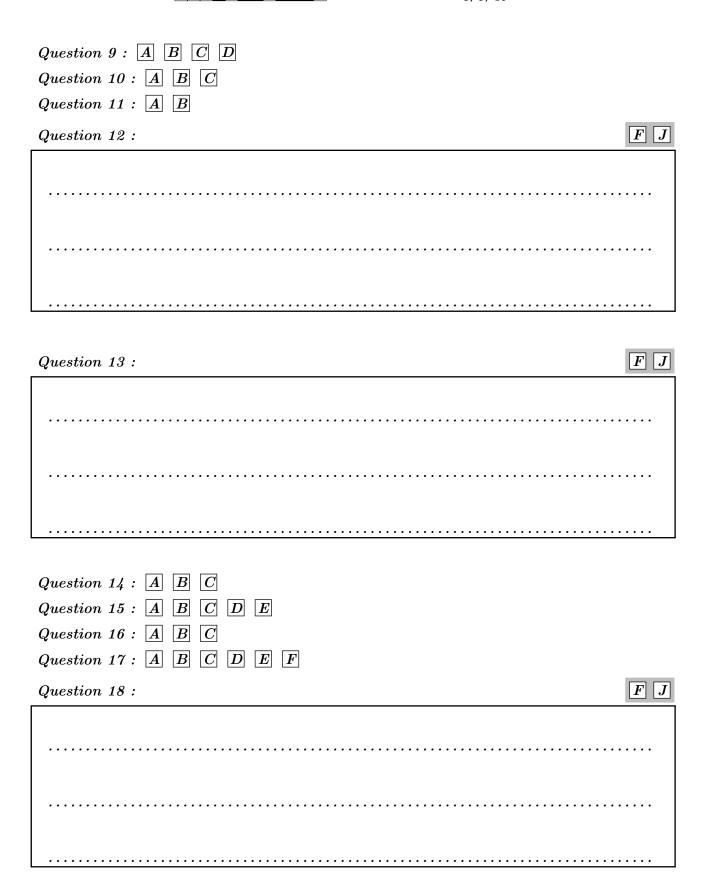
Question 16

$$\boxed{A} \ u_{em} = \frac{1}{2\mu_0} B^2 + \frac{1}{2} \varepsilon_0 E^2$$

$$\boxed{B} u_{em} = \frac{1}{2\mu_0} \mathbf{B} + \frac{1}{2} \varepsilon_0 \mathbf{E}$$

$$\boxed{A} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B}^2 + \frac{1}{2}\varepsilon_0 \mathbf{E}^2 \qquad \qquad \boxed{B} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B} + \frac{1}{2}\varepsilon_0 \mathbf{E} \qquad \qquad \boxed{C} \ u_{em} = \frac{1}{2}\mu_0 \mathbf{B}^2 + \frac{1}{2}\frac{\mathbf{E}^2}{\varepsilon_0} \mathbf{E}$$

$$\underline{A} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{B} \wedge \overrightarrow{E}}{\mu_0} \qquad \underline{B} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\varepsilon_0} \qquad \underline{C} \quad \overrightarrow{\Pi} = \mu_0 \overrightarrow{E} \wedge \overrightarrow{B} \qquad \underline{D} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\mu_0}$$


$$\boxed{C} \quad \overrightarrow{\Pi} = \mu_0 \overrightarrow{E} \wedge \overrightarrow{B}$$

$$\boxed{D} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{\mathrm{E}} \wedge \overrightarrow{\mathrm{B}}}{\mu_0}$$

E un vecteur qui permet de quantifier le flux de puissance électromagnétique à travers une surface. FAucune de ces réponses n'est correcte.

Feuille de réponses :			
		Nom et prénom :	
Les réponses aux questions sont à donner exclusivement sur cette feuille : les réponsés sur les feuilles précédentes ne seront pas prises en compte. La réponse doit donnée en noircissant la ou les bonnes réponses.			
Quest	tion 1:	$\boxed{F} \ \boxed{J}$	
Quest	tion 2 :	$oldsymbol{F} oldsymbol{J}$	
Quest Quest	tion 3: A B C D E tion 4: A B C D E tion 5: A B C D tion 6: A B C D		
	tion 7:	$oxed{F} oxed{J}$	

Question 8: A B C D

QCM révision septembre-octobre du 08/11/2021

Durée : 15 min. Aucun document n'est autorisé.

L'usage de la calculatrice est interdit.

Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse.

Le document réponse est à la fin du sujet.

Définir le point coïncident. Question 1

Question 2 Donner la définition du poids.

Question 3 4 La force d'inertie d'entraînement dans un référentiel en rotation uniforme à ω autour d'un axe fixe Oz possède les propriétés suivantes :

- A Elle est centrifuge.
- B Elle est axifuge.
- C C'est une force qui ne se ressent que dans des référentiels en rotation.
- \boxed{D} Elle s'écrit : $m\omega^2 \overrightarrow{HM}$. H, projeté de M sur l'axe de rotation.
- |E| Aucune de ces réponses n'est correcte.

Question 4 &

On considère un point matériel se déplaçant sur une sphère et repéré par ses coordonnées sphériques (r,θ,φ) . On étudie son mouvement dans un référentiel en rotation à ω uniforme autour de l'axe vertical ascendant Oz. l'énergie potentielle associée à la force d'inertie d'entraînement est :

$$A$$
 $E_p = \frac{1}{2}\omega^2 r^2$

B D'autant plus grande que le point M s'éloigne de l'axe de rotation.

$$C$$
 $E_p = \frac{1}{2}\omega^2 r^2 + Cte$

$$\boxed{D}$$
 $E_p = -\frac{1}{2}\omega^2(HM)^2 + Cte\ H\ projet\'e\ de\ M\ sur\ Oz$

|E| Aucune de ces réponses n'est correcte.

Question 5 La permittivité du vide ε_0 vaut :

$$A = 8,85.10^{-12} \text{ usi}$$

$$C$$
 8,85.10⁻¹² H.m⁻¹

Soit (O, x, y, z) un repère de l'espace dans lequel existe une distribution de charge. Si (O, x, z) est un plan d'antisymétrie de la distribution de charge :

- |A| Le champ est indépendant de x et z.
- B Le champ est pair selon la variable y.
- \overline{C} Le champ est invariant par translation selon y.
- D Le champ est impair selon la variable y.

$$\boxed{A} \oint \overrightarrow{G} \cdot \overrightarrow{dS} = \frac{m_{int}}{4\pi G}$$

$$\boxed{B} \oint \overrightarrow{\mathbf{G}} \cdot \overrightarrow{\mathbf{dS}} = -4\pi \mathbf{G} m_{int}$$

$$\overrightarrow{C} \oint \overrightarrow{G} \cdot \overrightarrow{dS} = 4\pi G m_{int}$$

$$\overrightarrow{D} \oint \overrightarrow{G} \cdot \overrightarrow{dS} = -\frac{m_{int}}{4\pi G}$$

Le champ électrique produit par un dipôle, orienté suivant l'axe z en coordonnées sphé-Question 9 riques (r, θ, φ) est :

- |A| Indépendant de l'angle θ

- D Contenu dans le plan médiateur du dipôle pour les points appartenant à ce plan.

La puissance volumique dissipée par effet Joule est : Question 10

- Due au champ magnétique.
- \boxed{B} $\mathcal{P} = \overrightarrow{\jmath} \wedge \overrightarrow{E}$ \boxed{C} $\mathcal{P} = \overrightarrow{\jmath} \cdot \overrightarrow{E}$

Le champ magnétique est : Question 11

- A Orthogonal aux plans d'antisymétrie de la distribution de courant.
- B Orthogonal aux plans de symétrie de la distribution de courant.

Question 12 Énoncer le théorème d'Ampère.

Question 13

Énoncer les quatre équations de Maxwell sous forme intégrale et locale avec leur nom.

Question 14

La conservation de la charge s'écrit :

$$\boxed{A} \frac{\partial \rho}{\partial t} + \text{div } \overrightarrow{E} = 0$$

$$B div \overrightarrow{\jmath} = 0$$

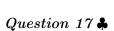
$$\boxed{C} \ \frac{\partial \rho}{\partial t} + \text{div } \overrightarrow{j} = 0$$

Question 15 4

Dans le cadre de l'ARQS :

- A La loi des nœuds n'est pas vérifiée.
- \boxed{B} Si elle est magnétique les équations de Maxwell associées à \overrightarrow{B} s'écrivent comme en statique.
- \overline{C} L \ll cau avec L la distance entre la source et le point M étudié et au le temps caractéristique d'évolution de la source.
- \boxed{D} On néglige la propagation des ondes électromagnétiques.
- \boxed{E} Aucune de ces réponses n'est correcte.

Question 16

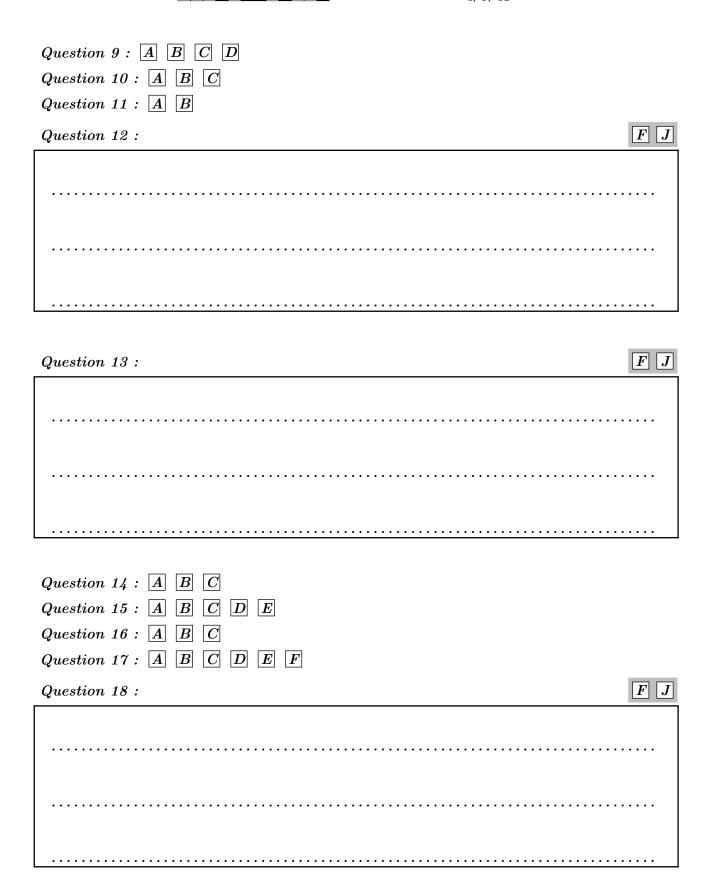

$$\boxed{A} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B} + \frac{1}{2} \varepsilon_0 \mathbf{E}$$

$$\boxed{B} \ u_{em} = \frac{1}{2}\mu_0 B^2 + \frac{1}{2} \frac{E^2}{\varepsilon_0}$$

$$\boxed{A} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B} + \frac{1}{2}\varepsilon_0 \mathbf{E}$$

$$\boxed{B} \ u_{em} = \frac{1}{2}\mu_0 \mathbf{B}^2 + \frac{1}{2}\frac{\mathbf{E}^2}{\varepsilon_0}$$

$$\boxed{C} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B}^2 + \frac{1}{2}\varepsilon_0 \mathbf{E}^2$$


$$\underline{A} \quad \overrightarrow{\Pi} = \mu_0 \overrightarrow{E} \wedge \overrightarrow{B} \qquad \underline{B} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{B} \wedge \overrightarrow{E}}{\mu_0}$$

$$C$$
 un vecteur qui permet de quantifier le flux de puissance électromagnétique à travers une surface.

 D $\overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\mu_0}$ E $\overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\varepsilon_0}$ F Aucune de ces réponses n'est correcte.

 $Question \ 8: oxedsymbol{A} oxedsymbol{B} oxedsymbol{C} oxedsymbol{D}$

QCM révision septembre-octobre du 08/11/2021

Durée : 15 min. Aucun document n'est autorisé.

L'usage de la calculatrice est interdit.

Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse.

Le document réponse est à la fin du sujet.

Définir le point coïncident. Question 1

Question 2 Donner la définition du poids.

Question 3 4 La force d'inertie d'entraînement dans un référentiel en rotation uniforme à ω autour d'un axe fixe Oz possède les propriétés suivantes :

- A Elle est centrifuge.
- \overline{B} Elle est axifuge.
- C C'est une force qui ne se ressent que dans des référentiels en rotation.
- \boxed{D} Elle s'écrit : $m\omega^2 \overrightarrow{HM}$. H, projeté de M sur l'axe de rotation.
- |E| Aucune de ces réponses n'est correcte.

Question 4 &

On considère un point matériel se déplaçant sur une sphère et repéré par ses coordonnées sphériques (r,θ,φ) . On étudie son mouvement dans un référentiel en rotation à ω uniforme autour de l'axe vertical ascendant Oz. l'énergie potentielle associée à la force d'inertie d'entraînement est :

$$A$$
 $E_p = \frac{1}{2}\omega^2 r^2$

B D'autant plus grande que le point M s'éloigne de l'axe de rotation.

$$\overline{C}$$
 $E_p = -\frac{1}{2}\omega^2(HM)^2 + Cte\ H\ projet\'e\ de\ M\ sur\ Oz$

$$\boxed{D} E_p = \frac{1}{2}\omega^2 r^2 + Cte$$

|E| Aucune de ces réponses n'est correcte.

Question 5 La permittivité du vide ε_0 vaut :

$$A = 6, 1.10^{-11} \text{ F.m}^{-1}$$

$$C$$
 8,85.10⁻¹² F.m⁻

Question 6 Soit (O, x, y, z) un repère de l'espace dans lequel existe une distribution de charge. Si (O, x, z) est un plan d'antisymétrie de la distribution de charge :

- |A| Le champ est indépendant de x et z.
- B Le champ est impair selon la variable y.
- \overline{C} Le champ est invariant par translation selon y.
- D Le champ est pair selon la variable y.

Question 8 Le théorème de Gauss pour la gravitation est :

$$\boxed{A} \iint \overrightarrow{G} \cdot d\overrightarrow{S} = -\frac{m_{int}}{4\pi G}$$

$$\overrightarrow{B}$$
 $\overrightarrow{\phi}\overrightarrow{G}$. $\overrightarrow{dS} = -4\pi G m_{int}$

$$\overrightarrow{C}$$
 $\oint \overrightarrow{G} \cdot d\overrightarrow{S} = \frac{m_{int}}{4\pi G}$

$$\overrightarrow{D} \not \overrightarrow{\text{MG}} \cdot \overrightarrow{\text{dS}} = 4\pi G m_{int}$$

Le champ électrique produit par un dipôle, orienté suivant l'axe z en coordonnées sphé-Question 9 riques (r, θ, φ) est :

- \boxed{A} Décroissant en $\frac{1}{r}$ \boxed{B} Décroissant en $\frac{1}{r^3}$
- C Contenu dans le plan médiateur du dipôle pour les points appartenant à ce plan.
- \boxed{D} Indépendant de l'angle θ

La puissance volumique dissipée par effet Joule est : Question 10

$$A \quad \mathcal{P} = \overrightarrow{\jmath} \cdot \overrightarrow{E}$$

 $\overline{|A|}$ $\mathcal{P} = \overrightarrow{\jmath}.\overrightarrow{E}$ \overline{B} Due au champ magnétique.

$$\boxed{C} \quad \mathcal{P} = \overrightarrow{\jmath} \wedge \overrightarrow{E}$$

Le champ magnétique est : Question 11

- A Orthogonal aux plans d'antisymétrie de la distribution de courant.
- B Orthogonal aux plans de symétrie de la distribution de courant.

Question 12 Énoncer le théorème d'Ampère.

Question 13

Enoncer les quatre équations de Maxwell sous forme intégrale et locale avec leur nom.

Question 14

La conservation de la charge s'écrit :

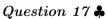
$$\boxed{A} \frac{\partial \rho}{\partial t} + \text{div } \overrightarrow{j} = 0$$

$$\boxed{B} \text{ div } \overrightarrow{\jmath} = 0$$

$$\boxed{C} \ \frac{\partial \rho}{\partial t} + \text{div } \overrightarrow{E} = 0$$

Question 15 4

Dans le cadre de l'ARQS :


- $|A| \perp \ll c\tau$ avec \perp la distance entre la source et le point M étudié et τ le temps caractéristique d'évolution de la source.
- \boxed{B} Si elle est magnétique les équations de Maxwell associées à \overrightarrow{B} s'écrivent comme en statique.
- |C| On néglige la propagation des ondes électromagnétiques.
- D La loi des nœuds n'est pas vérifiée.
- |E| Aucune de ces réponses n'est correcte.

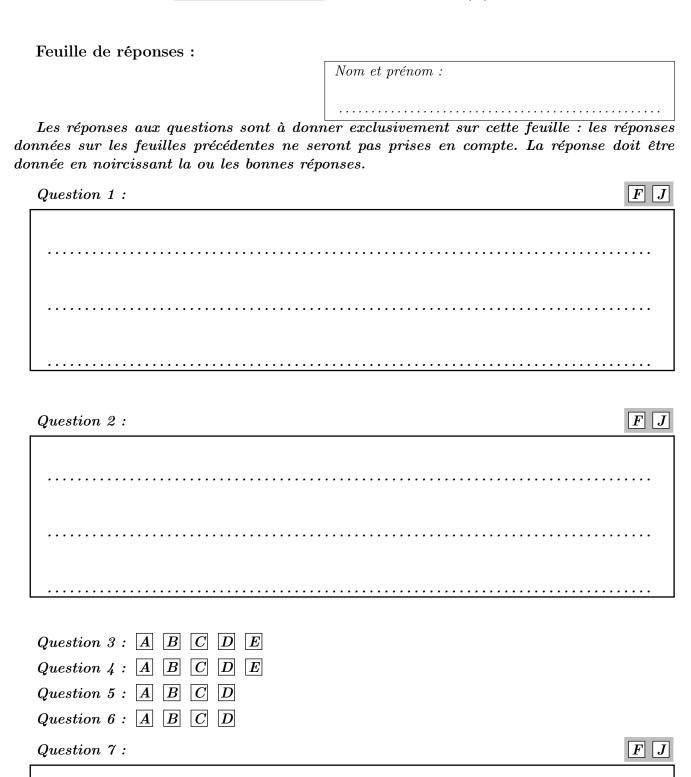
Question 16

$$\boxed{A} u_{em} = \frac{1}{2\mu_0} B^2 + \frac{1}{2} \varepsilon_0 E^2$$

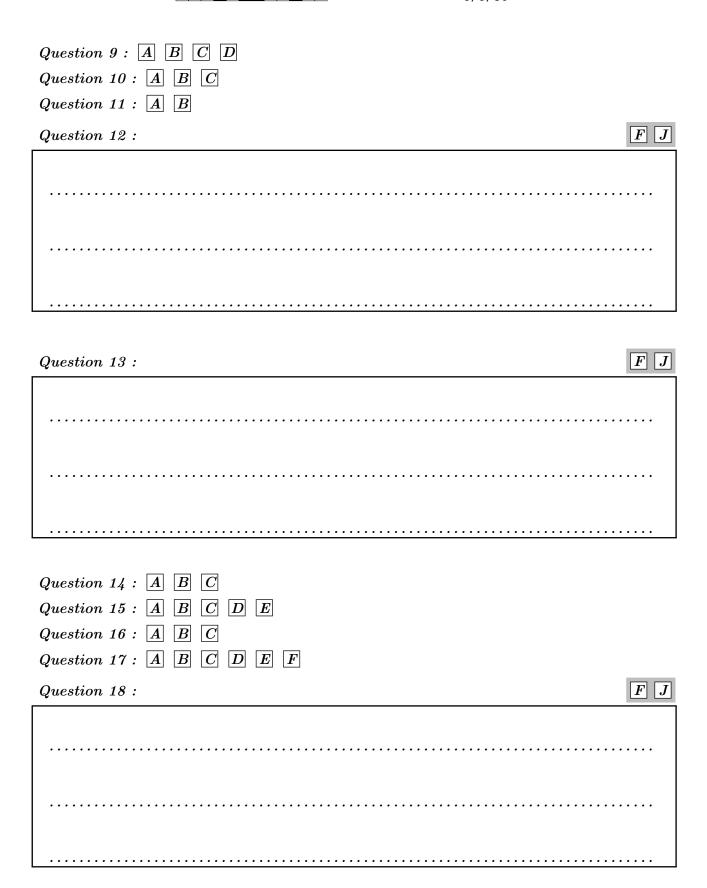
$$\boxed{B} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B} + \frac{1}{2} \varepsilon_0 \mathbf{E}$$

$$\boxed{A} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B}^2 + \frac{1}{2}\varepsilon_0 \mathbf{E}^2 \qquad \qquad \boxed{B} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B} + \frac{1}{2}\varepsilon_0 \mathbf{E} \qquad \qquad \boxed{C} \ u_{em} = \frac{1}{2}\mu_0 \mathbf{B}^2 + \frac{1}{2}\frac{\mathbf{E}^2}{\varepsilon_0} \mathbf{E}$$

$$\boxed{A} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\varepsilon_0} \qquad \boxed{B} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\mu_0} \qquad \boxed{C} \quad \overrightarrow{\Pi} = \mu_0 \overrightarrow{E} \wedge \overrightarrow{B}$$


$$\boxed{B} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\mu_0}$$

$$\boxed{C} \quad \overrightarrow{\Pi} = \mu_0 \overrightarrow{E} \wedge \overrightarrow{B}$$


un vecteur qui permet de quantifier le flux de puissance électromagnétique à travers une surface.

$$\boxed{E} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{\mathbf{B}} \wedge \overrightarrow{\mathbf{E}}}{\mu_0}$$

 \overline{F} Aucune de ces réponses n'est correcte.

 $Question \ 8 : \ \boxed{A} \ \boxed{B} \ \boxed{C} \ \boxed{D}$

QCM révision septembre-octobre du 08/11/2021

Durée : 15 min. Aucun document n'est autorisé.

L'usage de la calculatrice est interdit.

Les questions faisant apparaître le symbole 4 peuvent présenter zéro, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse.

Le document réponse est à la fin du sujet.

Question 1 Définir le point coïncident.

Question 2 Donner la définition du poids.

La force d'inertie d'entraînement dans un référentiel en rotation uniforme à ω autour Question $3 \clubsuit$ d'un axe fixe Oz possède les propriétés suivantes :

- |A| Elle est axifuge.
- \boxed{B} Elle s'écrit : $m\omega^2 \overrightarrow{\text{HM}}$. H, projeté de M sur l'axe de rotation.
- C Elle est centrifuge.
- D C'est une force qui ne se ressent que dans des référentiels en rotation.
- |E| Aucune de ces réponses n'est correcte.

Question 4 \$

On considère un point matériel se déplaçant sur une sphère et repéré par ses coordonnées sphériques (r,θ,φ) . On étudie son mouvement dans un référentiel en rotation à ω uniforme autour de l'axe vertical $ascendant\ Oz.\ l'énergie\ potentielle\ associ\'ee\ \grave{a}\ la\ force\ d'inertie\ d'entra\^nement\ est:$

$$\boxed{A}$$
 $E_p = -\frac{1}{2}\omega^2(\text{HM})^2 + \text{Cte H projet\'e de M sur Oz}$

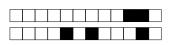
B D'autant plus grande que le point M s'éloigne de l'axe de rotation.

$$\underline{C} \quad \mathbf{E}_p = \frac{1}{2}\omega^2 r^2 + \mathbf{C}te$$

$$\underline{D} \quad \mathbf{E}_p = \frac{1}{2}\omega^2 r^2$$

$$\boxed{D} \ \mathbf{E}_p = \frac{1}{2}\omega^2 r^2$$

|E| Aucune de ces réponses n'est correcte.


Question 5 La permittivité du vide ε_0 vaut :

$$A = 8,85.10^{-12} \text{ H.m}^{-1}$$

$$C$$
 8,85.10⁻¹² F.m⁻

Question 6 Soit (O, x, y, z) un repère de l'espace dans lequel existe une distribution de charge. Si (O, x, z) est un plan d'antisymétrie de la distribution de charge :

- |A| Le champ est impair selon la variable y.
- B Le champ est pair selon la variable y.
- C Le champ est indépendant de x et z.
- D Le champ est invariant par translation selon y.

Question 8 Le théorème de Gauss pour la gravitation est :

$$\boxed{A} \oint \overrightarrow{G} \cdot d\overrightarrow{S} = \frac{m_{int}}{4\pi G}$$

$$\underline{B} \oint \overrightarrow{\mathbf{G}} \cdot \overrightarrow{\mathbf{dS}} = 4\pi \mathbf{G} m_{int}$$

$$\overrightarrow{C}$$
 $\oint \overrightarrow{G} \cdot d\overrightarrow{S} = -4\pi G m_{int}$

$$\overrightarrow{D} \oint \overrightarrow{G} \cdot \overrightarrow{dS} = -\frac{m_{int}}{4\pi G}$$

Le champ électrique produit par un dipôle, orienté suivant l'axe z en coordonnées sphé-Question 9 riques (r, θ, φ) est :

- A Contenu dans le plan médiateur du dipôle pour les points appartenant à ce plan.
- |B| Indépendant de l'angle θ
- C Décroissant en $\frac{1}{r}$
- \boxed{D} Décroissant en $\frac{1}{r^3}$

La puissance volumique dissipée par effet Joule est : Question 10

- Due au champ magnétique.
- [B] $\mathcal{P} = \overrightarrow{\jmath} \cdot \overrightarrow{E}$ [C] $\mathcal{P} = \overrightarrow{\jmath} \wedge \overrightarrow{E}$

Le champ magnétique est : Question 11

- A Orthogonal aux plans d'antisymétrie de la distribution de courant.
- B Orthogonal aux plans de symétrie de la distribution de courant.

Question 12 Enoncer le théorème d'Ampère.

Question 13

Énoncer les quatre équations de Maxwell sous forme intégrale et locale avec leur nom.

Question 14

La conservation de la charge s'écrit :

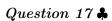
$$\boxed{A} \frac{\partial \rho}{\partial t} + \text{div } \overrightarrow{E} = 0$$
 $\boxed{B} \frac{\partial \rho}{\partial t} + \text{div } \overrightarrow{J} = 0$

$$\boxed{B} \ \frac{\partial \rho}{\partial t} + \text{div } \overrightarrow{j} = 0$$

$$\boxed{C}$$
 div $\overrightarrow{\jmath} = 0$

Question 15 4

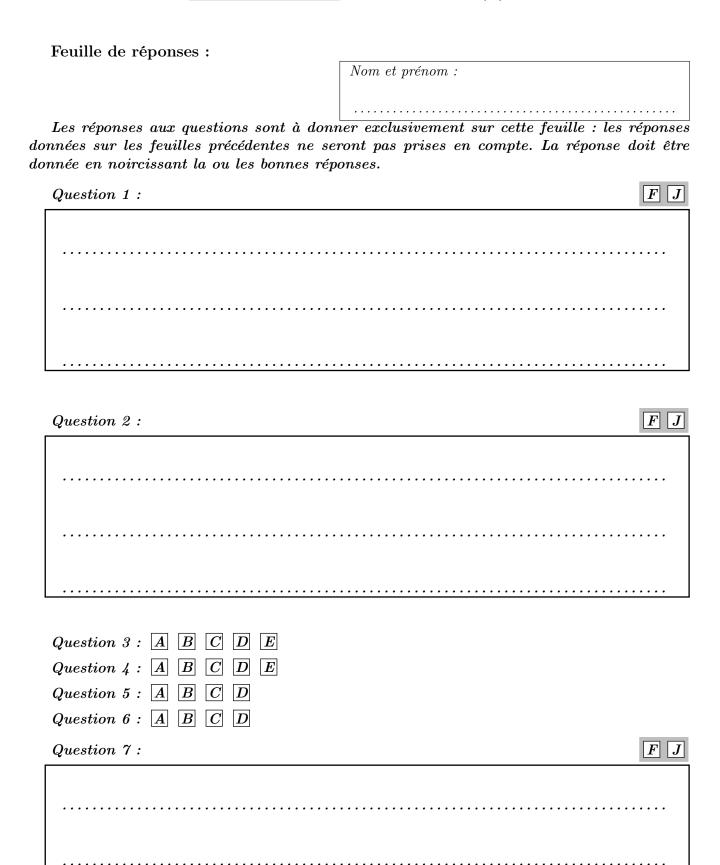
Dans le cadre de l'ARQS :

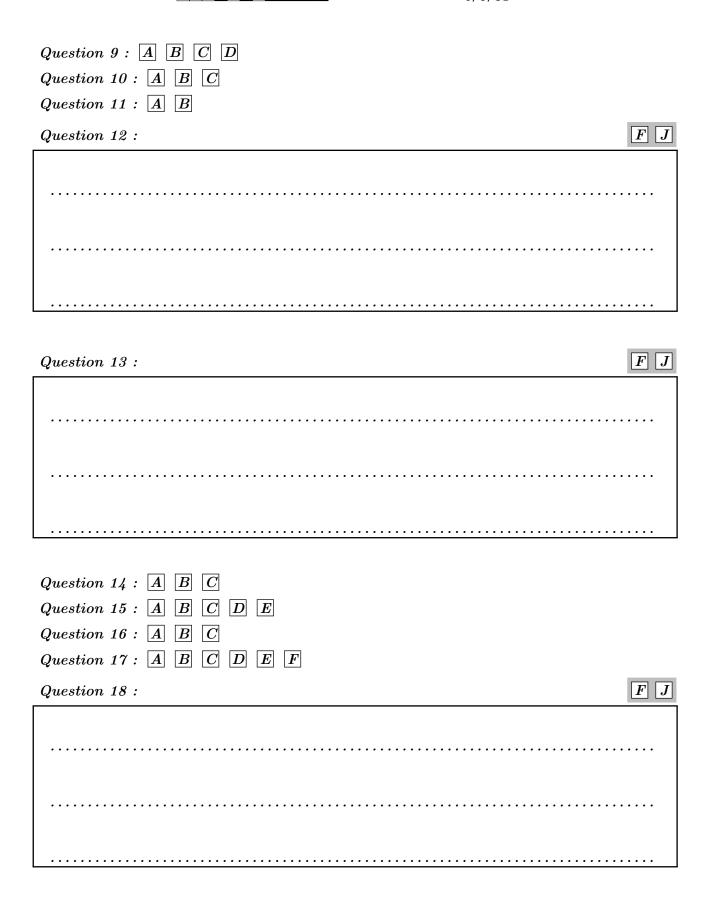

- | A | On néglige la propagation des ondes électromagnétiques.
- \overline{B} Si elle est magnétique les équations de Maxwell associées à \overline{B} s'écrivent comme en statique.
- $C \perp L \ll c\tau$ avec L la distance entre la source et le point M étudié et τ le temps caractéristique d'évolution de la source.
- D La loi des nœuds n'est pas vérifiée.
- E Aucune de ces réponses n'est correcte.

Question 16

$$\boxed{A} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B} + \frac{1}{2} \varepsilon_0 \mathbf{E}$$

$$\boxed{A} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B} + \frac{1}{2} \varepsilon_0 \mathbf{E} \qquad \qquad \boxed{B} \ u_{em} = \frac{1}{2} \mu_0 \mathbf{B}^2 + \frac{1}{2} \frac{\mathbf{E}^2}{\varepsilon_0} \qquad \qquad \boxed{C} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B}^2 + \frac{1}{2} \varepsilon_0 \mathbf{E}^2$$


$$C u_{em} = \frac{1}{2u_0} B^2 + \frac{1}{2} \varepsilon_0 E^2$$


$$\boxed{A} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\mu_0} \qquad \boxed{B} \quad \overrightarrow{\Pi} = \mu_0 \overrightarrow{E} \wedge \overrightarrow{B} \qquad \boxed{C} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\varepsilon_0} \qquad \boxed{D} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{B} \wedge \overrightarrow{E}}{\mu_0}$$

E un vecteur qui permet de quantifier le flux de puissance électromagnétique à travers une surface.

F Aucune de ces réponses n'est correcte.

 $Question \ 8: oxedsymbol{A} oxedsymbol{B} oxedsymbol{C} oxedsymbol{D}$

QCM révision septembre-octobre du 08/11/2021

Durée : 15 min. Aucun document n'est autorisé.

L'usage de la calculatrice est interdit.

Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse.

Le document réponse est à la fin du sujet.

Définir le point coïncident. Question 1

Question 2 Donner la définition du poids.

Question 3 4 La force d'inertie d'entraînement dans un référentiel en rotation uniforme à ω autour d'un axe fixe Oz possède les propriétés suivantes :

- | A | C'est une force qui ne se ressent que dans des référentiels en rotation.
- Elle est centrifuge.
- C Elle est axifuge.

- \boxed{D} Elle s'écrit : $m\omega^2 \overrightarrow{HM}$. H, projeté de M sur l'axe de rotation.
- |E| Aucune de ces réponses n'est correcte.

Question 4 &

On considère un point matériel se déplaçant sur une sphère et repéré par ses coordonnées sphériques (r,θ,φ) . On étudie son mouvement dans un référentiel en rotation à ω uniforme autour de l'axe vertical ascendant Oz. l'énergie potentielle associée à la force d'inertie d'entraînement est :

A D'autant plus grande que le point M s'éloigne de l'axe de rotation.

$$\boxed{B} \ \mathbf{E}_p = \frac{1}{2}\omega^2 r^2$$

$$\boxed{C}$$
 $E_p = -\frac{1}{2}\omega^2(HM)^2 + Cte H projeté de M sur Oz$

$$\boxed{D} E_p = \frac{1}{2}\omega^2 r^2 + Cte$$

|E| Aucune de ces réponses n'est correcte.

Question 5 La permittivité du vide ε_0 vaut :

Soit (O, x, y, z) un repère de l'espace dans lequel existe une distribution de charge. Si (O, x, z) est un plan d'antisymétrie de la distribution de charge :

- |A| Le champ est impair selon la variable y.
- B Le champ est invariant par translation selon y.
- C Le champ est indépendant de x et z.
- D Le champ est pair selon la variable y.

Question 8 Le théorème de Gauss pour la gravitation est :

$$\boxed{A} \iint \overrightarrow{\mathbf{G}} \cdot \overrightarrow{\mathbf{dS}} = -\frac{m_{int}}{4\pi \mathbf{G}}$$

$$\overrightarrow{B}$$
 $\overrightarrow{\text{MG}}$. $\overrightarrow{\text{dS}} = \frac{m_{int}}{4\pi G}$

$$C \oint \overrightarrow{G} \cdot \overrightarrow{dS} = -4\pi G m_{int}$$

$$\boxed{D} \oint \overrightarrow{G} \cdot \overrightarrow{dS} = 4\pi G m_{int}$$

Le champ électrique produit par un dipôle, orienté suivant l'axe z en coordonnées sphé-Question 9 riques (r, θ, φ) est :

- \boxed{A} Décroissant en $\frac{1}{r}$
- |B| Indépendant de l'angle θ
- Contenu dans le plan médiateur du dipôle pour les points appartenant à ce plan.
- \boxed{D} Décroissant en $\frac{1}{r^3}$

La puissance volumique dissipée par effet Joule est : Question 10

$$[A]$$
 $\mathcal{P} = \overrightarrow{\jmath} \wedge \overrightarrow{E}$ $[B]$ $\mathcal{P} = \overrightarrow{\jmath} \cdot \overrightarrow{E}$

$$B$$
 $\mathcal{P} = \overrightarrow{\jmath}.\overrightarrow{E}$

Question 11 Le champ magnétique est :

- A Orthogonal aux plans de symétrie de la distribution de courant.
- B Orthogonal aux plans d'antisymétrie de la distribution de courant.

Question 12 Énoncer le théorème d'Ampère.

Question 13

Enoncer les quatre équations de Maxwell sous forme intégrale et locale avec leur nom.

Question 14

La conservation de la charge s'écrit :

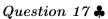
$$\boxed{A} \ \frac{\partial \rho}{\partial t} + \text{div } \overrightarrow{j} = 0$$

$$B div \overrightarrow{\jmath} = 0$$

$$\boxed{C} \frac{\partial \rho}{\partial t} + \text{div } \overrightarrow{E} = 0$$

Question 15 4

Dans le cadre de l'ARQS :


- A La loi des nœuds n'est pas vérifiée.
- \overline{B} L \ll cau avec L la distance entre la source et le point M étudié et au le temps caractéristique d'évolution de la source.
- \fbox{C} Si elle est magnétique les équations de Maxwell associées à \overrightarrow{B} s'écrivent comme en statique.
- D On néglige la propagation des ondes électromagnétiques.
- \overline{E} Aucune de ces réponses n'est correcte.

Question 16

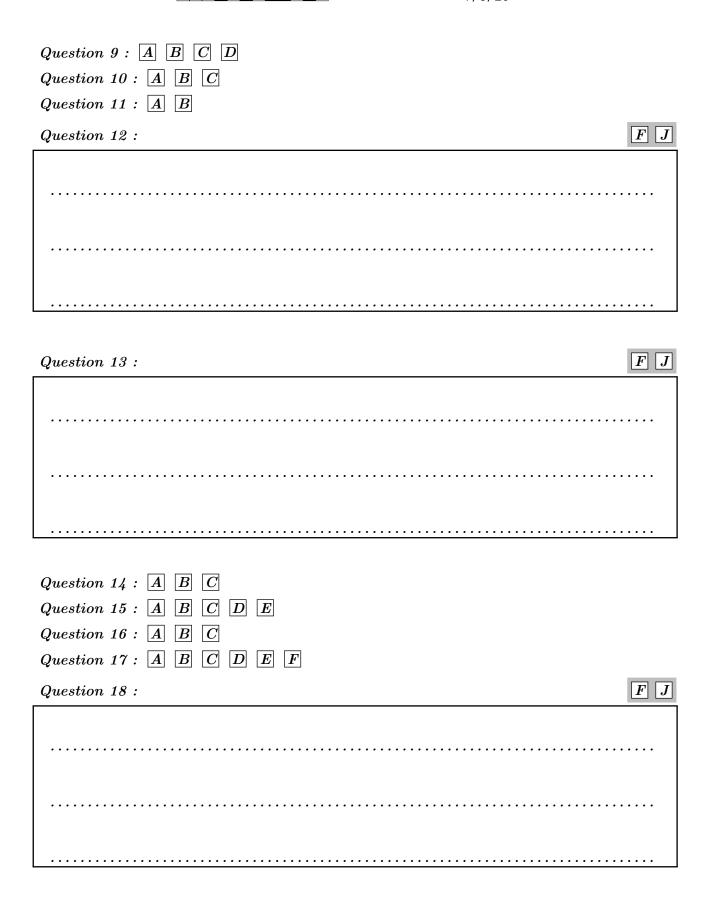
$$\boxed{A} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B} + \frac{1}{2} \varepsilon_0 \mathbf{E}$$

$$\boxed{A} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B} + \frac{1}{2} \varepsilon_0 \mathbf{E} \qquad \qquad \boxed{B} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B}^2 + \frac{1}{2} \varepsilon_0 \mathbf{E}^2 \qquad \qquad \boxed{C} \ u_{em} = \frac{1}{2} \mu_0 \mathbf{B}^2 + \frac{1}{2} \frac{\mathbf{E}^2}{\varepsilon_0} \mathbf{E}^2$$

$$\boxed{C} u_{em} = \frac{1}{2}\mu_0 B^2 + \frac{1}{2}\frac{E^2}{\varepsilon_0}$$

$$\overrightarrow{\mathbf{B}} \quad \overrightarrow{\mathbf{\Pi}} = \frac{\overrightarrow{\mathbf{B}} \wedge \overrightarrow{\mathbf{E}}}{u_0}$$

$$\boxed{C} \quad \overrightarrow{\Pi} = \mu_0 \overrightarrow{E} \wedge \overrightarrow{B}$$


$$\boxed{D} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\varepsilon_0}$$

$$E \quad \overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\mu_0}$$

 \overline{F} Aucune de ces réponses n'est correcte.

Feuille de réponses :		
-	Nom et prénom :	
Les réponses aux questions sont à donner exclusivement sur cette feuille : les réponnées sur les feuilles précédentes ne seront pas prises en compte. La réponse doit onnée en noircissant la ou les bonnes réponses.		
Question 1:	$oxed{F}$ $oxed{J}$	
Question 2:	$oxed{F} oxed{J}$	
$Question \ 3: \ \boxed{A} \ \boxed{B} \ \boxed{C} \ \boxed{D} \ \boxed{E}$		
Question 4 : $oldsymbol{A}$ $oldsymbol{B}$ $oldsymbol{C}$ $oldsymbol{D}$ $oldsymbol{E}$		
$Question \; 5 : \; oxed{A} \; oxed{B} \; oxed{C} \; oxed{D}$		
$Question \ 6: \ oldsymbol{A} \ oldsymbol{B} \ oldsymbol{C} \ oldsymbol{D}$		
$Question \ 7:$	$oxed{F}oxed{J}$	

Question $8: \boxed{A} \boxed{B} \boxed{C} \boxed{D}$

QCM révision septembre-octobre du 08/11/2021

Durée : 15 min. Aucun document n'est autorisé.

L'usage de la calculatrice est interdit.

Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse.

Le document réponse est à la fin du sujet.

Définir le point coïncident. Question 1

Question 2 Donner la définition du poids.

Question 3 4 La force d'inertie d'entraînement dans un référentiel en rotation uniforme à ω autour d'un axe fixe Oz possède les propriétés suivantes :

- |A| Elle est centrifuge.
- \overline{B} C'est une force qui ne se ressent que dans des référentiels en rotation.
- C Elle s'écrit : $m\omega^2 \overrightarrow{HM}$. H, projeté de M sur l'axe de rotation.
- |D| Elle est axifuge.
- |E| Aucune de ces réponses n'est correcte.

Question 4 .

On considère un point matériel se déplaçant sur une sphère et repéré par ses coordonnées sphériques (r,θ,φ) . On étudie son mouvement dans un référentiel en rotation à ω uniforme autour de l'axe vertical $ascendant\ Oz.\ l'énergie\ potentielle\ associ\'ee\ \grave{a}\ la\ force\ d'inertie\ d'entra\^nement\ est:$

$$\boxed{A} \ \mathrm{E}_p = \frac{1}{2}\omega^2 r^2$$

B D'autant plus grande que le point M s'éloigne de l'axe de rotation.

$$C$$
 $E_p = \frac{1}{2}\omega^2 r^2 + Cte$

$$\boxed{D}$$
 $E_p = -\frac{1}{2}\omega^2(HM)^2 + Cte\ H\ projet\'e\ de\ M\ sur\ Oz$

|E| Aucune de ces réponses n'est correcte.

La permittivité du vide ε_0 vaut : Question 5

$$A = 8,85.10^{-12} \text{ usi}$$

$$C$$
 8,85.10⁻¹² H.m⁻¹

Soit (O, x, y, z) un repère de l'espace dans lequel existe une distribution de charge. Si (O, x, z) est un plan d'antisymétrie de la distribution de charge :

- A Le champ est pair selon la variable y.
- B Le champ est impair selon la variable y.
- C Le champ est invariant par translation selon y.
- |D| Le champ est indépendant de x et z.

$$\boxed{A} \oint \overrightarrow{\mathbf{G}} \cdot d\overrightarrow{\mathbf{S}} = -4\pi \mathbf{G} m_{int}$$

$$B \longrightarrow \overrightarrow{G} \cdot \overrightarrow{dS} = 4\pi G m_{int}$$

$$C \oint \overrightarrow{G} \cdot \overrightarrow{dS} = \frac{m_{int}}{4\pi G}$$

$$\overrightarrow{D} \oint \overrightarrow{G} \cdot d\overrightarrow{S} = -\frac{m_{int}}{4\pi G}$$

Le champ électrique produit par un dipôle, orienté suivant l'axe z en coordonnées sphé-Question 9 riques (r, θ, φ) est :

- A Contenu dans le plan médiateur du dipôle pour les points appartenant à ce plan.
- \boxed{B} Décroissant en $\frac{1}{r^3}$
- C Décroissant en $\frac{1}{r}$
- | D| Indépendant de l'angle θ

La puissance volumique dissipée par effet Joule est : Question 10

- Due au champ magnétique.
- \boxed{B} $\mathcal{P} = \overrightarrow{\jmath} \wedge \overrightarrow{E}$ \boxed{C} $\mathcal{P} = \overrightarrow{\jmath} \cdot \overrightarrow{E}$

Le champ magnétique est : Question 11

- A Orthogonal aux plans d'antisymétrie de la distribution de courant.
- B Orthogonal aux plans de symétrie de la distribution de courant.

Question 12 Énoncer le théorème d'Ampère.

Question 13

Énoncer les quatre équations de Maxwell sous forme intégrale et locale avec leur nom.

Question 14

La conservation de la charge s'écrit :

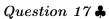
$$\boxed{A} \ \frac{\partial \rho}{\partial t} + \text{div } \overrightarrow{j} = 0$$

$$\boxed{C} \ \frac{\partial \rho}{\partial t} + \text{div } \overrightarrow{E} = 0$$

Question 15 &

Dans le cadre de l'ARQS :

- \overline{A} L \ll c τ avec L la distance entre la source et le point M étudié et τ le temps caractéristique d'évolution de la source.
- B On néglige la propagation des ondes électromagnétiques.
- \overline{C} Si elle est magnétique les équations de Maxwell associées à \overline{B} s'écrivent comme en statique.
- D La loi des nœuds n'est pas vérifiée.
- E Aucune de ces réponses n'est correcte.


Question 16

L'énergie électromagnétique volumique s'écrit :

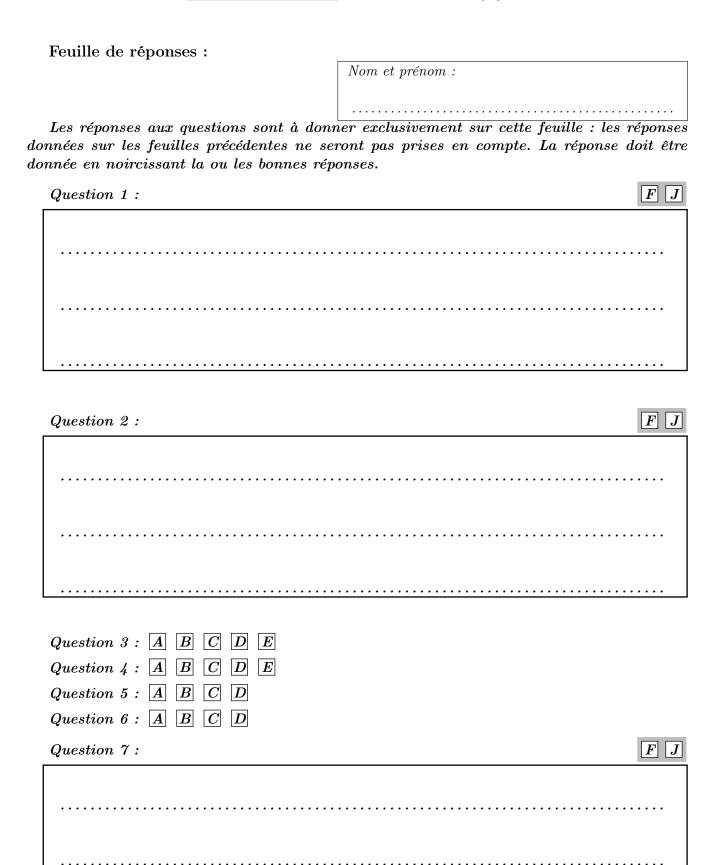
$$\boxed{A} u_{em} = \frac{1}{2u_0} B^2 + \frac{1}{2} \varepsilon_0 E^2$$

$$\boxed{B} u_{em} = \frac{1}{2u_0} \mathbf{B} + \frac{1}{2} \varepsilon_0 \mathbf{E}$$

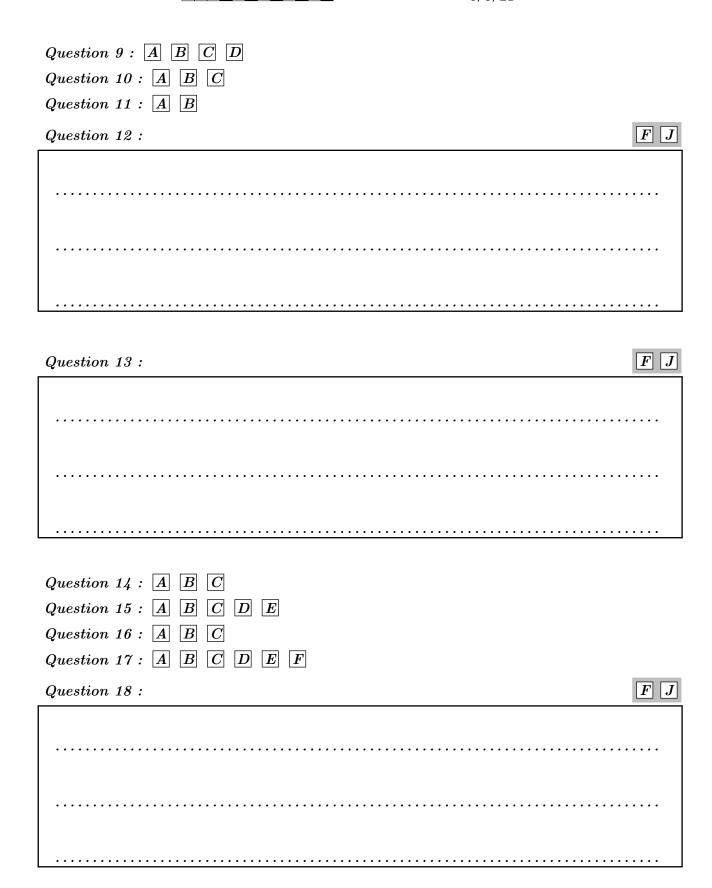
$$\boxed{A} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B}^2 + \frac{1}{2}\varepsilon_0 \mathbf{E}^2 \qquad \qquad \boxed{B} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B} + \frac{1}{2}\varepsilon_0 \mathbf{E} \qquad \qquad \boxed{C} \ u_{em} = \frac{1}{2}\mu_0 \mathbf{B}^2 + \frac{1}{2}\frac{\mathbf{E}^2}{\varepsilon_0}$$

Le vecteur de Poynting est :

$$\boxed{B} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\varepsilon_0}$$


$$\underline{C} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{E}}{\mu_0}$$

$$\boxed{D} \quad \overrightarrow{\Pi} = \mu_0 \overrightarrow{E} \wedge \overrightarrow{B}$$


$$E \quad \overrightarrow{\Pi} = \frac{\overrightarrow{B} \wedge \overrightarrow{E}}{\mu_0}$$

Aucune de ces réponses n'est correcte.

Question 18 $\'En noncer \ la \ loi \ locale \ de \ conservation \ de \ l'\'energie \ \'electromagn\'etique:$

 $Question \ 8: oxedsymbol{A} oxedsymbol{B} oxedsymbol{C} oxedsymbol{D}$

QCM

QCM révision septembre-octobre du 08/11/2021

Durée : 15 min. Aucun document n'est autorisé.

L'usage de la calculatrice est interdit.

Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse.

Le document réponse est à la fin du sujet.

Définir le point coïncident. Question 1

Question 2 Donner la définition du poids.

La force d'inertie d'entraînement dans un référentiel en rotation uniforme à ω autour Question $3 \clubsuit$ d'un axe fixe Oz possède les propriétés suivantes :

- |A| Elle est axifuge.
- B C'est une force qui ne se ressent que dans des référentiels en rotation.
- |C| Elle est centrifuge.

- \boxed{D} Elle s'écrit : $m\omega^2 \overrightarrow{HM}$. H, projeté de M sur l'axe de rotation.
- |E| Aucune de ces réponses n'est correcte.

Question 4 &

On considère un point matériel se déplaçant sur une sphère et repéré par ses coordonnées sphériques (r,θ,φ) . On étudie son mouvement dans un référentiel en rotation à ω uniforme autour de l'axe vertical ascendant Oz. l'énergie potentielle associée à la force d'inertie d'entraînement est :

$$\boxed{A} \ \mathbf{E}_p = \frac{1}{2}\omega^2 r^2 + \mathbf{C}te$$

B D'autant plus grande que le point M s'éloigne de l'axe de rotation.

$$C$$
 $E_p = \frac{1}{2}\omega^2 r^2$

 \boxed{D} $E_p = -\frac{1}{2}\omega^2(HM)^2 + Cte\ H\ projet\'e\ de\ M\ sur\ Oz$

|E| Aucune de ces réponses n'est correcte.

La permittivité du vide ε_0 vaut : Question 5

$$\boxed{A}$$
 6, 1.10⁻¹¹ F.m⁻

$$C$$
 8,85.10⁻¹² us

Soit (O, x, y, z) un repère de l'espace dans lequel existe une distribution de charge. Si (O, x, z) est un plan d'antisymétrie de la distribution de charge :

- |A| Le champ est pair selon la variable y.
- B Le champ est indépendant de x et z.
- \overline{C} Le champ est invariant par translation selon y.
- D Le champ est impair selon la variable y.

Donner la circulation de \overrightarrow{E} , le lien entre \overrightarrow{E} et V, le rotationnel de \overrightarrow{E} . Question 7

Question 8 Le théorème de Gauss pour la gravitation est :

$$\boxed{A} \oiint \overrightarrow{G} \cdot \overrightarrow{dS} = \frac{m_{int}}{4\pi G}$$

$$\underline{B} \oint \overrightarrow{\mathbf{G}} \cdot \overrightarrow{\mathbf{dS}} = 4\pi \mathbf{G} m_{int}$$

$$\overrightarrow{C}$$
 $\oint \overrightarrow{G} \cdot d\overrightarrow{S} = -4\pi G m_{int}$

$$\overrightarrow{D} \oint \overrightarrow{G} \cdot \overrightarrow{dS} = -\frac{m_{int}}{4\pi G}$$

Le champ électrique produit par un dipôle, orienté suivant l'axe z en coordonnées sphé-Question 9 riques (r, θ, φ) est :

- A Contenu dans le plan médiateur du dipôle pour les points appartenant à ce plan.
- \boxed{B} Décroissant en $\frac{1}{r}$
- $oxed{C}$ Indépendant de l'angle heta
- \boxed{D} Décroissant en $\frac{1}{r^3}$

Question 10 La puissance volumique dissipée par effet Joule est :

$$A$$
 $\mathcal{P} = \overrightarrow{\jmath} \wedge \overrightarrow{E}$

B Due au champ magnétique.

$$C$$
 $\mathcal{P} = \overrightarrow{\jmath}.\overrightarrow{E}$

Le champ magnétique est :

- A Orthogonal aux plans d'antisymétrie de la distribution de courant.
- B Orthogonal aux plans de symétrie de la distribution de courant.

Question 12 Énoncer le théorème d'Ampère.

Question 13

Énoncer les quatre équations de Maxwell sous forme intégrale et locale avec leur nom.

Question 14

La conservation de la charge s'écrit :

$$\boxed{A}$$
 div $\overrightarrow{\jmath} = 0$

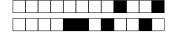
$$\boxed{B} \ \frac{\partial \rho}{\partial t} + \text{div } \overrightarrow{j} = 0$$

$$\boxed{B} \frac{\partial \rho}{\partial t} + \operatorname{div} \overrightarrow{j} = 0 \qquad \boxed{C} \frac{\partial \rho}{\partial t} + \operatorname{div} \overrightarrow{E} = 0$$

Question 15 4

Dans le cadre de l'ARQS :

- | A | On néglige la propagation des ondes électromagnétiques.
- B La loi des nœuds n'est pas vérifiée.
- \fbox{C} Si elle est magnétique les équations de Maxwell associées à \overrightarrow{B} s'écrivent comme en statique.
- \overline{D} L \ll cau avec L la distance entre la source et le point M étudié et au le temps caractéristique d'évolution de la source.
- |E| Aucune de ces réponses n'est correcte.


Question 16

L'énergie électromagnétique volumique s'écrit :

$$\boxed{A} u_{em} = \frac{1}{2}\mu_0 B^2 + \frac{1}{2}\frac{E^2}{\varepsilon_0}$$

$$\boxed{B} \ u_{em} = \frac{1}{2u_0} B^2 + \frac{1}{2} \varepsilon_0 E^2$$

$$\boxed{A} \ u_{em} = \frac{1}{2}\mu_0 B^2 + \frac{1}{2}\frac{E^2}{\varepsilon_0} \qquad \boxed{B} \ u_{em} = \frac{1}{2\mu_0} B^2 + \frac{1}{2}\varepsilon_0 E^2 \qquad \boxed{C} \ u_{em} = \frac{1}{2\mu_0} B + \frac{1}{2}\varepsilon_0 E$$

Question 17 \clubsuit

Le vecteur de Poynting est :

$$\boxed{A} \quad \overrightarrow{\Pi} = \mu_0 \overrightarrow{E} \wedge \overrightarrow{B} \qquad \boxed{B} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\mu_0} \qquad \boxed{C} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{B} \wedge \overrightarrow{E}}{\mu_0}$$

D un vecteur qui permet de quantifier le flux de puissance électromagnétique à travers une surface.

$$\underline{E} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\varepsilon_0}$$
 $\underline{F} \quad \text{Aucune de ces réponses n'est correcte.}$

Question 18 Énoncer la loi locale de conservation de l'énergie électromagnétique :

Feuille de réponses :	Nom et prénom :	
	Nom et prenont.	
Les réponses aux questions sont à donner exclusivement sur cette feuille : les réponse nnées sur les feuilles précédentes ne seront pas prises en compte. La réponse doit êtr nnée en noircissant la ou les bonnes réponses.		
Question 1:	$oldsymbol{F} oldsymbol{J}$	
	••••••••••••	
Question 2:	$oxed{F} oxed{J}$	
$Question \ 3: \ \boxed{A} \ \boxed{B} \ \boxed{C} \ \boxed{D} \ \boxed{E}$		
Question 4: A B C D E		
$Question \ 5: \ \boxed{A} \ \boxed{B} \ \boxed{C} \ \boxed{D}$		
$Question 6 : oxedsymbol{ A } oxedsymbol{ B } oxedsymbol{ C } oxedsymbol{ D }$		
$Question \ 7:$	$oxed{F}oxed{J}$	

Question $8: \boxed{A} \boxed{B} \boxed{C} \boxed{D}$

$Question \; g : \; oxedsymbol{A} \; \; oxedsymbol{B} \; \; oxedsymbol{C} \; \; oxedsymbol{D}$
$Question \; 10: \; oxed{A} \; oxed{B} \; oxed{C}$
$Question 11: oxedsymbol{ar{A}} oxedsymbol{ar{B}}$
Question 12:
Question 13:
Question 14: \overline{A} \overline{B} \overline{C}
$Question \; 15: \; oldsymbol{A} \; oldsymbol{B} \; oldsymbol{C} \; oldsymbol{D} \; oldsymbol{E}$
$Question \; 16: \; oxed{A} \; oxed{B} \; oxed{C}$
$Question \; 17: \; oldsymbol{A} \; oldsymbol{B} \; oldsymbol{C} \; oldsymbol{D} \; oldsymbol{E} \; oldsymbol{F}$
Question 18:

QCM

QCM révision septembre-octobre du 08/11/2021

Durée : 15 min. Aucun document n'est autorisé.

L'usage de la calculatrice est interdit.

Les questions faisant apparaître le symbole 4 peuvent présenter zéro, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse.

Le document réponse est à la fin du sujet.

Question 1 Définir le point coïncident.

Question 2 Donner la définition du poids.

La force d'inertie d'entraînement dans un référentiel en rotation uniforme à ω autour Question $3 \clubsuit$ d'un axe fixe Oz possède les propriétés suivantes :

- A Elle est axifuge.
- \boxed{B} Elle est centrifuge.
- \overline{C} Elle s'écrit : $m\omega^2 \overrightarrow{HM}$. H, projeté de M sur

l'axe de rotation.

- D C'est une force qui ne se ressent que dans des référentiels en rotation.
- |E| Aucune de ces réponses n'est correcte.

Question 4 \$

On considère un point matériel se déplaçant sur une sphère et repéré par ses coordonnées sphériques (r,θ,φ) . On étudie son mouvement dans un référentiel en rotation à ω uniforme autour de l'axe vertical ascendant Oz. l'énergie potentielle associée à la force d'inertie d'entraînement est :

$$\boxed{A} \ \mathbf{E}_p = \frac{1}{2}\omega^2 r^2 + \mathbf{C}te$$

$$\boxed{B} \ \mathbf{E}_p = \frac{1}{2}\omega^2 r^2$$

$$\boxed{B} \ \mathbf{E}_p = \frac{1}{2}\omega^2 r^2$$

$$C$$
 $E_p = -\frac{1}{2}\omega^2(HM)^2 + Cte H projeté de M sur Oz$

- D'autant plus grande que le point M s'éloigne de l'axe de rotation.
- E Aucune de ces réponses n'est correcte.

La permittivité du vide ε_0 vaut : Question 5

$$\boxed{A}$$
 8,85.10⁻¹² usi

$$C$$
 8,85.10⁻¹² F.m⁻

Soit (O, x, y, z) un repère de l'espace dans lequel existe une distribution de charge. Si (O, x, z) est un plan d'antisymétrie de la distribution de charge :

- |A| Le champ est pair selon la variable y.
- B Le champ est indépendant de x et z.
- C Le champ est impair selon la variable y.
- D Le champ est invariant par translation selon y.

Donner la circulation de \overrightarrow{E} , le lien entre \overrightarrow{E} et V, le rotationnel de \overrightarrow{E} . Question 7

Question 8 Le théorème de Gauss pour la gravitation est :

$$\boxed{A} \oint \overrightarrow{G} \cdot d\overrightarrow{S} = \frac{m_{int}}{4\pi G}$$

$$\underline{B} \oint \overrightarrow{\mathbf{G}} \cdot \overrightarrow{\mathbf{dS}} = 4\pi \mathbf{G} m_{int}$$

$$\overrightarrow{C}$$
 $\oint \overrightarrow{G} \cdot d\overrightarrow{S} = -4\pi G m_{int}$

$$\overrightarrow{D} \oint \overrightarrow{G} \cdot \overrightarrow{dS} = -\frac{m_{int}}{4\pi G}$$

Le champ électrique produit par un dipôle, orienté suivant l'axe z en coordonnées sphé-Question 9 riques (r, θ, φ) est :

- \boxed{A} Décroissant en $\frac{1}{r}$ \boxed{B} Décroissant en $\frac{1}{r^3}$
- C Contenu dans le plan médiateur du dipôle pour les points appartenant à ce plan.
- \overline{D} Indépendant de l'angle θ

La puissance volumique dissipée par effet Joule est : Question 10

- Due au champ magnétique.
- $\underline{B} \quad \mathcal{P} = \overrightarrow{\jmath} \wedge \overrightarrow{E} \qquad \boxed{C} \quad \mathcal{P} = \overrightarrow{\jmath} \cdot \overrightarrow{E}$

Le champ magnétique est : Question 11

- A Orthogonal aux plans de symétrie de la distribution de courant.
- B Orthogonal aux plans d'antisymétrie de la distribution de courant.

Question 12 Énoncer le théorème d'Ampère.

Question 13

Enoncer les quatre équations de Maxwell sous forme intégrale et locale avec leur nom.

Question 14

La conservation de la charge s'écrit :

$$\boxed{A} \ \frac{\partial \rho}{\partial t} + \text{div } \overrightarrow{j} = 0$$

$$B div \overrightarrow{j} = 0$$

$$\boxed{C} \frac{\partial \rho}{\partial t} + \text{div } \overrightarrow{E} = 0$$

Question 15 4

Dans le cadre de l'ARQS :

- A On néglige la propagation des ondes électromagnétiques.
- \overline{B} L \ll cau avec L la distance entre la source et le point M étudié et au le temps caractéristique d'évolution de la source.
- \fbox{C} Si elle est magnétique les équations de Maxwell associées à \overrightarrow{B} s'écrivent comme en statique.
- D La loi des nœuds n'est pas vérifiée.
- \overline{E} Aucune de ces réponses n'est correcte.

Question 16

L'énergie électromagnétique volumique s'écrit :

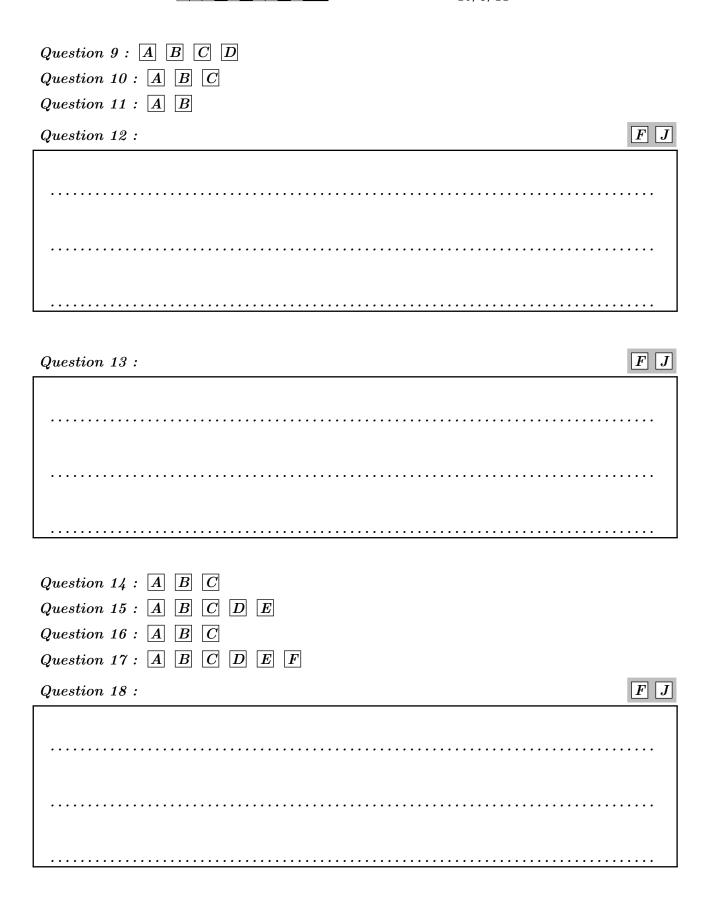
$$\boxed{A} u_{em} = \frac{1}{2\mu_0} B^2 + \frac{1}{2} \varepsilon_0 E^2$$

$$\boxed{B} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B} + \frac{1}{2} \varepsilon_0 \mathbf{E}$$

$$\boxed{A} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B}^2 + \frac{1}{2}\varepsilon_0 \mathbf{E}^2 \qquad \qquad \boxed{B} \ u_{em} = \frac{1}{2\mu_0} \mathbf{B} + \frac{1}{2}\varepsilon_0 \mathbf{E} \qquad \qquad \boxed{C} \ u_{em} = \frac{1}{2}\mu_0 \mathbf{B}^2 + \frac{1}{2}\frac{\mathbf{E}^2}{\varepsilon_0} \mathbf{E}$$

Le vecteur de Poynting est :

$$A \qquad \overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\mu_0}$$


$$\overrightarrow{C} \quad \overrightarrow{\Pi} = \frac{\overrightarrow{B} \wedge \overrightarrow{E}}{\mu_0} \qquad D \quad \overrightarrow{\Pi} = \mu_0 \overrightarrow{E} \wedge \overrightarrow{B} \qquad E \quad \overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\varepsilon_0}$$

$$F \quad \text{Aucune de ces réponses n'est correcte.}$$

Question 18 Énoncer la loi locale de conservation de l'énergie électromagnétique :

Feuille de réponses :	Nom et prénom :	
	Nom et prenom .	
Les réponses aux questions sont à donner exclusivement sur cette feuille : les réponse nnées sur les feuilles précédentes ne seront pas prises en compte. La réponse doit êtr nnée en noircissant la ou les bonnes réponses.		
Question 1:	$oldsymbol{F} oldsymbol{J}$	
Question 2:		
	·····	
$Question \ 3: egin{array}{c cccc} A & B & C & D & B \\ Question \ 4: egin{array}{c cccc} A & B & C & D & B \\ \hline \end{array}$		
$Question \ 5: \ A \ B \ C \ D$		
Question $6: A B C D$ Question $7:$	$oxed{F}oxed{J}$	

Question $8: \boxed{A} \boxed{B} \boxed{C} \boxed{D}$

