AF1.txt
| 1 | *[id=AF1.1,horiz] L’égalité de la division euclidienne de [[\pyc{a=alea(11,20)}\py{a}]] par [[\pyc{b=alea(2,9)}\py{b}]] est :
|
|---|---|
| 2 | - [[$\py{a} = \py{b} \times \pyc{print(a//b - 1)} + \pyc{print(mod(a,b) + b)}$]]
|
| 3 | - [[$\py{a} = \py{b} \times \pyc{print(a//b)} + \pyc{print(mod(a,b) + b)}$]]
|
| 4 | + [[$\py{a} = \py{b} \times \pyc{print(a//b)} + \pyc{print(mod(a,b))}$]]
|
| 5 | |
| 6 | ################################ |
| 7 | |
| 8 | *[id=AF1.2,horiz] Complete l'égalité : [[$ \pyc{a=alea(6,9)}\py{a} \times \pyc{b=alea(6,9)}\py{b} = \ldots $]]
|
| 9 | + [[$\pyc{print(a*b)}$]]
|
| 10 | - [[$\pyc{print(a+b)}$]]
|
| 11 | - [[$\pyc{print(a*(b-1))}$]]
|
| 12 | - [[$\pyc{print((a-1)*b)}$]]
|
| 13 | |
| 14 | *[id=AF1.3,horiz] Complete l'égalité : [[$ \pyc{a=alea(6,9)}\py{a} \times \ldots = \pyc{b=alea(6,9);print(a*b)} $]]
|
| 15 | + [[$\pyc{print(b)}$]]
|
| 16 | - [[$\pyc{print(b-1)}$]]
|
| 17 | - [[$\pyc{print(b+2)}$]]
|
| 18 | - [[$\pyc{print(b-2)}$]]
|