Allowed materials
Paper
$\square \mathrm{No}$
\checkmark No
Pocket calculator Syllabus
Books
Other study materials
Hand in Exam questions
\checkmark No
\checkmark No
\checkmark No
$\square \mathrm{No}$
$\boldsymbol{\sim}$ Yes,
$\boldsymbol{\checkmark}$ scratch paper
-lined paper
\square squared paper

Remarks

- Remember to check your name and student number on the Optical Response Sheet (ORS).
- This exam has 24 questions.
- Each question carries 3 marks.
- For an incorrect answer you will be given -1 mark.
- Completely fill out the black boxes with a soft black pencil. Thus like this: and not like: \otimes.
- Make sure that the stapled pins are removed from the ORS.
- Some questions have one or more correct answers. Such questions are marked with a \& .
- Hand in your ORS completely. Not handing in your ORS results in no grade. Note that your ORS is numbered!

Student Name:

Student Number:
Class: $11^{\text {th }}$

Question 1 The dimension of quantity $\frac{L}{R C V}$ is
(A) $[A]$
O $[\mathrm{A}]^{-1}$
(C) $[\mathrm{A}]^{2}$
(D) None of these

Question 2 A physical quantity x depends on quantities y and z as follows: $x=A y+\tan C z$ where A , B and C are constants. Which of the following do not have the same dimensions
O x and A
(B) C and z^{-1}
(C) y and $\frac{A}{B}$
(D) x and B

Question 3 Which of the two have same dimensionsForce and strain
${ }^{B}$ Energy and strain
C Force and stress
Angular velocity and frequency

Question 4 Dimensional formula of capacitance is
(A) $\mathrm{ML}^{-2} \mathrm{~T}^{-4} \mathrm{~A}^{2}$
(B) $\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{-4} \mathrm{~A}^{-2}$
$\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2}$
(D) $\mathrm{ML}^{2} \mathrm{~T}^{4} \mathrm{~A}^{-2}$

Question 5 The magnitude of a given vector with end points (4,-4,0) and ($-2,-2,0$) must be \ldots
$2 \sqrt{10}$
(B) 6
(C) $5 \sqrt{2}$
(D) 4

Question 6100 coplanar forces each equal to 10 N act on a body. Each force makes angle $\frac{\pi}{50}$ with the preceding force. What is the resultant of the forces ?
(A) 250 N
(B) 500 N
(C) 1000 N

O Zero

Question $7 \quad \mathrm{ML}^{3} \mathrm{~T}^{-1} \mathrm{Q}^{-2}$ is the dimension of
(A) Conductivity
C Resistance
Resistivity
(D) None of these

Question 8 The dimensions of pressure is equal to
(A) Energy

- Energy per unit volume

C Force
(D) Force per unit volume

Question 9 The dimensional formula for impulse is
(A) $\mathrm{ML}^{2} \mathrm{~T}^{-1}$
(C) MLT $^{-2}$
(B) $\mathrm{M}^{2} \mathrm{LT}^{-1}$
MLT ${ }^{-1}$

Question 10 The quantity $\mathrm{x}=\frac{\varepsilon_{0} L V}{t}$; here ε_{0} is the permittivity of free space, L is length, V is potential difference and t is time. The dimensions of X are same as that of
(A) Charge
Current
(C) Voltage
(D) Resistance

Question 11 The dimensions of universal gravitational constant are
$\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}$
(B) $\mathrm{ML}^{2} \mathrm{~T}^{-2}$
(C) $\mathrm{M}^{-2} \mathrm{~L}^{2} \mathrm{~T}^{-2}$

Question 12 How many minimum number of coplanar vectors having different magnitudes can be added to give zero resultant?

- 3
(B) 2
(C) 4
(D) 5

Question 13 Given vector $\vec{A}=2 \hat{i}+3 \hat{j}$ the angle between \vec{A} and $y-a x i s$ is \ldots
(A) $\cos ^{-1} \frac{2}{3}$

- $\tan ^{-1} \frac{2}{3}$
(C) $\tan ^{-1} \frac{3}{2}$
(D) $\sin ^{-1} \frac{2}{3}$

Question 14 The angles which a vector $\hat{i}+\hat{j}+\sqrt{2} \hat{k}$ makes with X, Y and Z axes respectively are \ldots
(A) $45^{\circ}, 45^{\circ}, 60^{\circ}$
(C) $60^{\circ}, 60^{\circ}, 60^{\circ}$
(B) $45^{\circ}, 45^{\circ}, 45^{\circ}$
$60^{\circ}, 60^{\circ}, 45^{\circ}$

Question 15 The unit of permittivity of free space ε_{0} is
Coulomb ${ }^{2} /$ Newton-metre ${ }^{2}$
${ }^{B}$ Newton-metre ${ }^{2} /$ coulomb ${ }^{2}$
C coulomb ${ }^{2} /(\text { Newton-metre })^{2}$
(D) Coulomb/Newton-metre

Question 16 The expression $\left(\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}\right)$ is a ...
(A) Vector of magnitude $\sqrt{2}$
(B) Scalar

Unit Vector
(D) Null Vector

Question 17 Let ε_{0} denotes the dimensional formula of the permittivity of the vacuum and μ_{0} that of the permeability of the vacuum. If $\mathrm{M}=$ mass, $\mathrm{L}=$ length, $\mathrm{T}=$ time and $\mathrm{I}=$ electric current, then
(A) $\varepsilon_{0}=\mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{4} \mathrm{I}^{2}$
(B) $\varepsilon_{0}=M^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{2} \mathrm{I}$
(C) $\mu_{0}=\mathrm{ML}^{2} \mathrm{~T}^{-1} \mathrm{I}$
$\mu_{0}=$ ML T$^{-2} \mathrm{I}^{-2}$

Question 18 Two quantities A and B have different dimensions. Which mathematical operation given below is physically meaningful
(A) None of these
C) $\mathrm{A}+\mathrm{B}$
A/B
(D) $\mathrm{A}-\mathrm{B}$

Question 19 Identify the pair whose dimensions are equal
Torque and work
C) Stress and energy
(B) Force and work
(D) Force and stress

Question 20 How many wavelength of Kr^{38} are there in one metre
(A) 652189.63
(C) 2348123.73
1650763.73
(D) 1553164.13

Question 21 L, C and R represent physical quantities inductance, capacitance and resistance respectively. The combination which has the dimensions of frequency is
(A) $\frac{1}{\sqrt{L C}}$

- $\frac{1}{R C}$ and $\frac{R}{L}$
(C) $\frac{C}{L}$
(D) $\frac{1}{\sqrt{R C}}$ and $\sqrt{\frac{R}{L}}$

Question 22 A hall has the dimensions $10 \mathrm{~m} \times 12 \mathrm{~m} \times 14 \mathrm{~m}$.A fly starting at one corner ends up at a diametrically opposite corner. What is the magnitude of its displacement?

- 21 m
(B) 17 m
C C 36 m
(D) 26 m

Question 23 Light year is a unit of
(A) Time
(B) Energy

Distance
(D) Mass

Question $240.4 \hat{i}+0.8 \hat{j}+c \hat{k}$ represents a unit vector when c is \ldots
(A) -0.2
(B) $\sqrt{0.8}$
(c) 0
$\sqrt{0.2}$

Name: Yash Barad

Encode your student number in the boxes on the left. Make all boxes on this page that apply completely black with pencil or felt tip.

