

| Module: Physics Test - Paper 1 |                                 |
|--------------------------------|---------------------------------|
| Exam-code: 112013052801        | Date: May 29 <sup>th</sup> 2013 |
| Teacher: Mr. Ram Mishra        | Time: 16:00-17:30               |
| Subject: Physics               | Number of pages: 4              |

| Allowed materials<br>Paper | □No | ✔Yes, | ✓scratch paper<br>□lined paper<br>□squared paper |
|----------------------------|-----|-------|--------------------------------------------------|
| Pocket calculator          | ✔No | □Yes  |                                                  |
| Syllabus                   | ✔No | □Yes  |                                                  |
| Books                      | ✔No | □Yes  |                                                  |
| Other study materials      | ✔No | □Yes  |                                                  |
| Hand in Exam questions     | □No | ✔Yes  |                                                  |

## Remarks

- Remember to check your name and student number on the Optical Response Sheet (ORS).
- This exam has 24 questions.
- Each question carries 3 marks.
- For an incorrect answer you will be given -1 mark.
- Completely fill out the black boxes with a soft black pencil. Thus like this: and not like: ⊗.
- Make sure that the stapled pins are removed from the ORS.
- Some questions have one or more correct answers. Such questions are marked with a .
- Hand in your ORS completely. Not handing in your ORS results in no grade. Note that your ORS is numbered!

| • • • • • • • • • • • • • • • • • • • • |
|-----------------------------------------|
|                                         |

**Question 1** The dimension of quantity  $\frac{L}{RCV}$  is

(A) 
$$[A]$$
(C)  $[A]^2$ (D)  $[A]^{-1}$ (D) None of these

**Question 2** A physical quantity x depends on quantities y and z as follows:  $x = Ay + \tan Cz$  where A, B and C are constants. Which of the following do not have the same dimensions

| x and A                            | (c) y and $\frac{A}{B}$ |
|------------------------------------|-------------------------|
| <sup>₿</sup> C and z <sup>-1</sup> | $\bigcirc$ x and B      |

**Question 3** Which of the two have same dimensions

| A Force and strain               | © Force and stress               |
|----------------------------------|----------------------------------|
| <sup>(B)</sup> Energy and strain | • Angular velocity and frequency |

Question 4 Dimensional formula of capacitance is

| $  ML^{-2}T^{-4}A^2 $          | $\bullet M^{-1}L^{-2}T^4A^2$ |
|--------------------------------|------------------------------|
| (B) $M^{-1}L^{-2}T^{-4}A^{-2}$ | $\bigcirc ML^2T^4A^{-2}$     |

**Question 5** The magnitude of a given vector with end points (4,-4,0) and (-2,-2,0) must be ...

| $2\sqrt{10}$ | $\bigcirc 5\sqrt{2}$ |
|--------------|----------------------|
| B 6          | D 4                  |

**Question 6** 100 coplanar forces each equal to 10 N act on a body. Each force makes angle  $\frac{\pi}{50}$  with the preceding force. What is the resultant of the forces ?

| <ul><li>A 250 N</li><li>B 500 N</li></ul>                         |                                          | C      | ) 1000 N<br>Zero                         |
|-------------------------------------------------------------------|------------------------------------------|--------|------------------------------------------|
| Question 7                                                        | $ML^{3}T^{-1}Q^{-2}$ is the dimension of |        |                                          |
| <ul> <li>A Conduct</li> <li>Conduct</li> <li>Resistive</li> </ul> | tivity<br>/ity                           | C<br>D | ) Resistance<br>) None of these          |
| A Energy                                                          | per unit volume                          | C<br>D | ) Force<br>) Force per unit volume       |
| Question 9                                                        | The dimensional formula for impulse i    | .s     |                                          |
|                                                                   |                                          | C      | ) MLT <sup>-2</sup><br>MLT <sup>-1</sup> |

**Question 10** The quantity  $x = \frac{\varepsilon_0 LV}{t}$ ; here  $\varepsilon_0$  is the permittivity of free space, L is length, V is potential difference and t is time. The dimensions of X are same as that of

| (A) Charge | (c) Voltage  |
|------------|--------------|
| Current    | D Resistance |

2:2

Question 11 The dimensions of universal gravitational constant are

| $M^{-1}L^{3}T^{-2}$ | ⓒ $M^{-2}L^{2}T^{-2}$ |
|---------------------|-----------------------|
| (B) $ML^2T^{-2}$    | (b) $ML^{-1}T^{-2}$   |

**Question 12** How many minimum number of coplanar vectors having different magnitudes can be added to give zero resultant ?

**Question 13** Given vector  $\vec{A} = 2\hat{i} + 3\hat{j}$  the angle between  $\vec{A}$  and y - axis is ...

| $ (A) \cos^{-1} \frac{2}{3} $   | $\odot \tan^{-1} \frac{3}{2}$    |
|---------------------------------|----------------------------------|
| $\bullet \tan^{-1} \frac{2}{3}$ | $\bigcirc \sin^{-1} \frac{2}{3}$ |

**Question 14** The angles which a vector  $\hat{i} + \hat{j} + \sqrt{2}\hat{k}$  makes with X, Y and Z axes respectively are ...

| A 45°, 45°, 60° | $\bigcirc$ 60°, 60°, 60°             |
|-----------------|--------------------------------------|
| B 45°, 45°, 45° | $60^{\circ}, 60^{\circ}, 45^{\circ}$ |

**Question 15** The unit of permittivity of free space  $\varepsilon_0$  is

| Coulomb     | <sup>2</sup> / Newton-metre <sup>2</sup>                                      | $\bigcirc$ coulomb <sup>2</sup> / (Newton-metre) <sup>2</sup> |
|-------------|-------------------------------------------------------------------------------|---------------------------------------------------------------|
| B Newton-   | metre <sup>2</sup> /coulomb <sup>2</sup>                                      | D Coulomb/Newton-metre                                        |
| Question 16 | The expression $(\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j})$ is a |                                                               |
| A Vector o  | f magnitude $\sqrt{2}$                                                        | Unit Vector                                                   |

```
B Scalar
```

**Question 17** Let  $\varepsilon_0$  denotes the dimensional formula of the permittivity of the vacuum and  $\mu_0$  that of the permeability of the vacuum. If M = mass, L= length, T= time and I= electric current, then

D Null Vector

| $ ( A ) \varepsilon_0 = \mathbf{M}^{-1} \mathbf{L}^{-3} \mathbf{T}^4 \mathbf{I}^2 $ | $\bigcirc \mu_0 = ML^2T^{-1}I$ |
|-------------------------------------------------------------------------------------|--------------------------------|
| (B) $\varepsilon_0 = \mathbf{M}^{-1} \mathbf{L}^{-3} \mathbf{T}^2 \mathbf{I}$       | • $\mu_0 = ML T^{-2}I^{-2}$    |

**Question 18** Two quantities A and B have different dimensions. Which mathematical operation given below is physically meaningful

| A None of these | ⓒ A + B |
|-----------------|---------|
| A/B             | D A - B |

**Question 19** Identify the pair whose dimensions are equal

| Torque and work               | © Stress and energy  |
|-------------------------------|----------------------|
| <sup>(B)</sup> Force and work | (D) Force and stress |

**Question 20** How many wavelength of  $Kr^{38}$  are there in one metre

| A 652189.63 | © 2348123.73 |
|-------------|--------------|
| 1650763.73  | D 1553164.13 |

2:3

Question 21 L, C and R represent physical quantities inductance, capacitance and resistance respectively. The combination which has the dimensions of frequency is

| (A) $\frac{1}{\sqrt{LC}}$        | $\bigcirc \frac{C}{L}$                                  |
|----------------------------------|---------------------------------------------------------|
| $\frac{1}{RC}$ and $\frac{R}{L}$ | $\bigcirc \frac{1}{\sqrt{RC}}$ and $\sqrt{\frac{R}{L}}$ |

A hall has the dimensions 10m x 12m x 14m .A fly starting at one corner ends up at a Question 22 diametrically opposite corner. What is the magnitude of its displacement?

• • •

| <b>2</b> 1m |                                                            | C      | 36m      |
|-------------|------------------------------------------------------------|--------|----------|
| B 17m       |                                                            | D      | 26m      |
| Question 23 | Light year is a unit of                                    |        |          |
| (A) Time    |                                                            |        | Distance |
| B Energy    |                                                            | D      | Mass     |
| Question 24 | $0.4\hat{i} + 0.8\hat{j} + c\hat{k}$ represents a unit vec | ctor w | hen c is |

| A -0.2             | © 0               |
|--------------------|-------------------|
| $ (B) \sqrt{0.8} $ | $\int \sqrt{0.2}$ |

Name: Yash Barad Test Score: 32/72 Percentage Marks: 44.44/100 Centre: Adajan

**Optical Response Sheet** 



 3/3
 Question 2: ● ○ ○

 3/3
 Question 3: ● ●

 3/3
 Question 4: ● ●

 3/3
 Question 5: ● ●

 3/3
 Question 5: ● ●

 3/3
 Question 5: ● ●

 3/3
 Question 7: ● ●

 0/3
 Question 7: ● ●

 1/3
 Question 7: ● ●

 3/3
 Question 9: ● ●

 3/3
 Question 9: ● ●

 3/3
 Question 10 ● ●

 3/3
 Question 11 ● ●

 0/3
 Question 12 ●

-1/3Question 14 0 0 0 0/3 Question 15 8 00 3/3 Question 16 0 0 Question 17 (A) (B) (C) (A) 0/3 3/3 Question 18 3/3 Question 19 3/3 Question 20 A CO 0/3 Question 21 () () () 0/3 Question 22 000 3/3 Question 23 (A) (B) (D) -1/3 Question 24 00 000