ME 4543: Mechatornics
Department of Mechanical Engineering
Mock Exam
Useful information:

(1) There are 4 questions.
(2) Each question has only 1 correct answer. Each question is worth 1 point and there is no negative marking.
(3) Cellphones, laptops, tablets and other electronics except calculators should be shut down. Only calculators are allowed.
(4) Darken the appropriate box next to the options entirely. Your answers will be graded by a computer so it is important that you darken the bubble entirely and do not write anything near the bubbles or options.

NOTE: The actual exam will have 20 questions worth 20 points.
Firstname and Lastname:
$\ldots \ldots \ldots$.

Part 1

Question 1 Consider the breadboard below. Indicate the true statementHoles shown by the blue vertical box denoted by a are all connectedThree options are trueHoles shown by the pink vertical line denoted by c are all connectedHoles shown by the red dashed line denoted by b are all connectedTwo options are true

Question 2 For the waveform $y(t)=10 \sin (\pi)+5 \cos (\pi)$, the DC offset is

Question 3 A voltage source $V=10 \mathrm{~V}$, resistors R_{1} and $R_{2}=20 \Omega$ are in all series. If the voltage drop across the R_{1} resistor is 2.5 V then R_{1} in Ω is

Question 4 A voltage source V_{s} is connected in series with two resistors $R_{1}=1 \Omega$ and $R_{2}=2$ Ω. If voltage drop across R_{1} is 1 V then V_{s} in V is

Question 5 Consider two resistances, $R_{1}=5 \Omega$ and $R_{2}=10 \Omega$. The two resistors when connected in series, have an effective resistance $R_{\text {series }}$ and when connected in parallel, have an effective resistance $R_{\text {parallel }}$. Indicate all true statements.

$R_{\text {series }}>R_{1}$$R_{2}>R_{\text {parallel }}$$R_{\text {parallel }}>R_{\text {series }}$Two options are trueThree options are true
Question 6 A resistor has a value of $50 \mathrm{M} \Omega$. The second band is black. The third band will beRedBlueOrangeVoilet
Question 7 Two capacitors of values $2 \mu F$ each as connected in series. The equivalent capacitance in μF is

Question 8 In the circuit shown if $V a=10 \mathrm{~V}$ and $V b=5 \mathrm{~V}$ then $V_{\text {out }}$ in V equalsThree options are trueTwo options are true$R_{2}>R_{\text {parallel }}$$R_{\text {series }}>R_{1}$$R_{\text {parallel }}>R_{\text {series }}$

ME 4543: Mechatornics
Department of Mechanical Engineering
Mock Exam
Useful information:

(1) There are 4 questions.
(2) Each question has only 1 correct answer. Each question is worth 1 point and there is no negative marking.
(3) Cellphones, laptops, tablets and other electronics except calculators should be shut down. Only calculators are allowed.
(4) Darken the appropriate box next to the options entirely. Your answers will be graded by a computer so it is important that you darken the bubble entirely and do not write anything near the bubbles or options.

NOTE: The actual exam will have 20 questions worth 20 points.
Firstname and Lastname:

Part 1

Question 1 In the circuit shown if $V a=10 \mathrm{~V}$ and $V b=5 \mathrm{~V}$ then $V_{\text {out }}$ in V equals$R_{\text {parallel }}>R_{\text {series }}$Three options are true$R_{\text {series }}>R_{1}$$R_{2}>R_{\text {parallel }}$Two options are true

Question 2 Two capacitors of values $2 \mu F$ each as connected in series. The equivalent capacitance in μF is
1
8
240.5

Question 3 Consider two resistances, $R_{1}=5 \Omega$ and $R_{2}=10 \Omega$. The two resistors when connected in series, have an effective resistance $R_{\text {series }}$ and when connected in parallel, have an effective resistance $R_{\text {parallel }}$. Indicate all true statements.Three options are true$R_{\text {parallel }}>R_{\text {series }}$$R_{2}>R_{\text {parallel }}$$R_{\text {series }}>R_{1}$Two options are true
Question 4 Consider the breadboard below. Indicate the true statementHoles shown by the pink vertical line denoted by c are all connectedTwo options are trueThree options are trueHoles shown by the red dashed line denoted by b are all connectedHoles shown by the blue vertical box denoted by a are all connected

Question 5 A voltage source V_{s} is connected in series with two resistors $R_{1}=1 \Omega$ and $R_{2}=2$ Ω. If voltage drop across R_{1} is 1 V then V_{s} in V is

Question 6 For the waveform $y(t)=10 \sin (\pi)+5 \cos (\pi)$, the DC offset is

Question $7 \quad$ A voltage source $V=10 \mathrm{~V}$, resistors R_{1} and $R_{2}=20 \Omega$ are in all series. If the voltage drop across the R_{1} resistor is 2.5 V then R_{1} in Ω is
\square 53.337.56.6710

Question $8 \quad$ A resistor has a value of $50 \mathrm{M} \Omega$. The second band is black. The third band will be
\square OrangeVoilet
\square Red
\square Blue

ME 4543: Mechatornics

Department of Mechanical Engineering Mock Exam

Useful information:

(1) There are 4 questions.
(2) Each question has only 1 correct answer. Each question is worth 1 point and there is no negative marking.
(3) Cellphones, laptops, tablets and other electronics except calculators should be shut down. Only calculators are allowed.
(4) Darken the appropriate box next to the options entirely. Your answers will be graded by a computer so it is important that you darken the bubble entirely and do not write anything near the bubbles or options.

NOTE: The actual exam will have 20 questions worth 20 points.

Firstname and Lastname:

Part 1

Question 1 A voltage source V_{s} is connected in series with two resistors $R_{1}=1 \Omega$ and $R_{2}=2$ Ω. If voltage drop across R_{1} is 1 V then V_{s} in V is

Question 2 Consider the breadboard below. Indicate the true statementTwo options are trueHoles shown by the pink vertical line denoted by c are all connectedThree options are trueHoles shown by the blue vertical box denoted by a are all connected
\square Holes shown by the red dashed line denoted by b are all connected

Question 3 A voltage source $V=10 \mathrm{~V}$, resistors R_{1} and $R_{2}=20 \Omega$ are in all series. If the voltage drop across the R_{1} resistor is 2.5 V then R_{1} in Ω is3.33107.56.67

Question 4 Two capacitors of values $2 \mu F$ each as connected in series. The equivalent capacitance in μF is80.541

Question 5 In the circuit shown if $V a=10 \mathrm{~V}$ and $V b=5 \mathrm{~V}$ then $V_{\text {out }}$ in V equalsTwo options are true$R_{\text {parallel }}>R_{\text {series }}$$R_{2}>R_{\text {parallel }}$$R_{\text {series }}>R_{1}$Three options are true

Question 6 A resistor has a value of $50 \mathrm{M} \Omega$. The second band is black. The third band will be

Question 7 For the waveform $y(t)=10 \sin (\pi)+5 \cos (\pi)$, the DC offset is

Question 8 Consider two resistances, $R_{1}=5 \Omega$ and $R_{2}=10 \Omega$. The two resistors when connected in series, have an effective resistance $R_{\text {series }}$ and when connected in parallel, have an effective resistance $R_{\text {parallel }}$. Indicate all true statements.$R_{\text {parallel }}>R_{\text {series }}$$R_{\text {series }}>R_{1}$$R_{2}>R_{\text {parallel }}$Two options are trueThree options are true

ME 4543: Mechatornics
Department of Mechanical Engineering
Mock Exam
Useful information:

(1) There are 4 questions.
(2) Each question has only 1 correct answer. Each question is worth 1 point and there is no negative marking.
(3) Cellphones, laptops, tablets and other electronics except calculators should be shut down. Only calculators are allowed.
(4) Darken the appropriate box next to the options entirely. Your answers will be graded by a computer so it is important that you darken the bubble entirely and do not write anything near the bubbles or options.

NOTE: The actual exam will have 20 questions worth 20 points.
Firstname and Lastname:

Part 1

Question 1 A voltage source $V=10 \mathrm{~V}$, resistors R_{1} and $R_{2}=20 \Omega$ are in all series. If the voltage drop across the R_{1} resistor is 2.5 V then R_{1} in Ω is

| \square | 5 | \square | 3.33 | \square | $\boxed{ }$ | \square | \square | \square | 10 | \square |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 7.5

Question 2 Consider two resistances, $R_{1}=5 \Omega$ and $R_{2}=10 \Omega$. The two resistors when connected in series, have an effective resistance $R_{\text {series }}$ and when connected in parallel, have an effective resistance $R_{\text {parallel }}$. Indicate all true statements.

```
\(\square R_{\text {parallel }}>R_{\text {series }}\)
```

```\(R_{\text {series }}>R_{1}\)
```

```Two options are true
```

```Three options are true
```

```\(R_{2}>R_{\text {parallel }}\)
```

Question 3 Two capacitors of values $2 \mu F$ each as connected in series. The equivalent capacitance in μF is

Question 4 A voltage source V_{s} is connected in series with two resistors $R_{1}=1 \Omega$ and $R_{2}=2$ Ω. If voltage drop across R_{1} is 1 V then V_{s} in V is

Question 5 In the circuit shown if $V a=10 \mathrm{~V}$ and $V b=5 \mathrm{~V}$ then $V_{\text {out }}$ in V equalsThree options are true
$\square R_{2}>R_{\text {parallel }}$$R_{\text {series }}>R_{1}$
$\square R_{\text {parallel }}>R_{\text {series }}$Two options are true

Question 6 A resistor has a value of $50 \mathrm{M} \Omega$. The second band is black. The third band will beOrangeVoiletBlueRed
Question 7 Consider the breadboard below. Indicate the true statementHoles shown by the pink vertical line denoted by c are all connectedHoles shown by the red dashed line denoted by b are all connectedTwo options are trueThree options are trueHoles shown by the blue vertical box denoted by a are all connected

Question 8 For the waveform $y(t)=10 \sin (\pi)+5 \cos (\pi)$, the DC offset is
$\square 12$
\square
\square
\square

ME 4543: Mechatornics
Department of Mechanical Engineering
Mock Exam
Useful information:

(1) There are 4 questions.
(2) Each question has only 1 correct answer. Each question is worth 1 point and there is no negative marking.
(3) Cellphones, laptops, tablets and other electronics except calculators should be shut down. Only calculators are allowed.
(4) Darken the appropriate box next to the options entirely. Your answers will be graded by a computer so it is important that you darken the bubble entirely and do not write anything near the bubbles or options.

NOTE: The actual exam will have 20 questions worth 20 points.
Firstname and Lastname:

Part 1

Question 1 A resistor has a value of $50 \mathrm{M} \Omega$. The second band is black. The third band will beRedOrangeBlueVoilet

Question 2 Two capacitors of values $2 \mu F$ each as connected in series. The equivalent capacitance in μF is

Question 3 A voltage source $V=10 \mathrm{~V}$, resistors R_{1} and $R_{2}=20 \Omega$ are in all series. If the voltage drop across the R_{1} resistor is 2.5 V then R_{1} in Ω is

Question 4 A voltage source V_{s} is connected in series with two resistors $R_{1}=1 \Omega$ and $R_{2}=2$ Ω. If voltage drop across R_{1} is 1 V then V_{s} in V is

1.2

Question 5 In the circuit shown if $V a=10 \mathrm{~V}$ and $V b=5 \mathrm{~V}$ then $V_{\text {out }}$ in V equalsThree options are true$R_{\text {parallel }}>R_{\text {series }}$$R_{\text {series }}>R_{1}$$R_{2}>R_{\text {parallel }}$Two options are true

Question 6 Consider the breadboard below. Indicate the true statementHoles shown by the red dashed line denoted by b are all connectedThree options are trueTwo options are trueHoles shown by the blue vertical box denoted by a are all connectedHoles shown by the pink vertical line denoted by c are all connected

Question 7 For the waveform $y(t)=10 \sin (\pi)+5 \cos (\pi)$, the DC offset is12$-5$15011

Question 8 Consider two resistances, $R_{1}=5 \Omega$ and $R_{2}=10 \Omega$. The two resistors when connected in series, have an effective resistance $R_{\text {series }}$ and when connected in parallel, have an effective resistance $R_{\text {parallel }}$. Indicate all true statements.Three options are true$R_{2}>R_{\text {parallel }}$Two options are true$R_{\text {parallel }}>R_{\text {series }}$$R_{\text {series }}>R_{1}$

